28.5-2表示一组数据分布的量
- 格式:doc
- 大小:190.50 KB
- 文档页数:5
28.5(2) 表示一组数据分布的量重点:频率分布直方图的绘制步骤以及从频率分布直方图中获取信息 难点:从频率分布直方图中获取信息【教学流程】【学习导航】一、学习准备:1.为统计八年级某班全体学生英语学科期末考试成绩,制作了如下频数分布表(1)请完成这个频数分布表. (2)数据分组时的组距为__________,最大值和最小值的差最多为_______.(3)从频数分布表中可获得那些信息?(4)80分(包括80)以上人数占全班人数的百分比是____________ 二、新课探索:1、如下图,分别是A 班、B 班学生参加环保知识竞赛的成绩的频数分布直方图,根据图中信息该如何比较A 、B 两班参赛学生成绩的分布情况?A 学生有_____人,B 班学生有_____人.直接从个小组的频数比较两班的参赛成绩的分布情况比较困难.如果将每小组的频数除以全班数据总的个数,就可以得到各小组数据频数与全组数据总个数的比值,我们把这个比值叫做_______.全组数据的总个数小组中数据的频数组频率由于组频率表示比值大小,因此可以用组频率来比较两个人数______的两个班级学生成绩的分布情况.将频数分布表扩充到频率分布表:从频率分布表可比较A、B两班参赛学生成绩的分布情况.2.各小组的频率和为_____.3.如何画频率分布直方图?为了解学生用于阅读课外书籍的时间的情况,某校对九年级(1)班40名学生每周阅读课外书籍所用的时间进行统计.调查结果如下(时间单位:小时):1.5, 3.5 ,9.0 ,5.0 ,4.5, 3.0 ,6.0,2.5 ,5.5 ,5.5 ,4.0, 3.0, 2.0, 6.5, 8.0, 2.5, 8.5, 7.0, 6.5, 4.0,9.5, 1.0, 4.0, 3.5, 7.5, 7.0, 1.0, 6.0, 0.0, 5.0,2.0, 5.5, 8.5, 6.0, 4.5, 4.0, 7.0, 6.0, 5.5, 9.0.填写频率分布直方图:在频率分布直方图中,用每小组的小矩形的面积表示该小组的组频率.频率纵轴表示:组距横轴:与频数分布直方图相同.组距频率________________________________每个小长方形的面积=_________________ 所有小长方形的面积和=____________4.对于人口、身高、体重等问题,我们可以通过大容量的随机样本的分布来推断总体的分布.例.为了了解全区6000名初中毕业生的体重情况,随机抽测了400名学生的体重,统计结果列表如下:(1)计算组频率,填入表内.(2)画出样本的频率分布直方图.(3)估计全区初中毕业生中体重小于60千克且不小于50千克的学生有_________人.三、课内小结:1. ______________________________________________叫做组频率.2. 频率分布直方图的横轴是指________________________________________;纵轴是指________________________________________________________. 3.各小矩形的面积为该小组的__________;各小矩形的面积和等于___________.【课内检测】1. 某中学数学教研组有25名教师,将他们按年龄分成三个小组,在38-45(岁)小组内有8名教师,那么这个小组的组频率是____________.2. 填写频率分布表中为完成部分. 思考:根据已知数据可先求什么?3.某商店上个月第一周五种不同品牌牙膏的售出量的频数分布如下:1)品牌A牙膏的频数是________,它的实际意义是_______________________2)品牌D牙膏的频率是________,它的实际意义是_______________________4.将学习导航1中A、B两班学生参加环保知识竞赛的成绩情况,编制频率分布表,画出相应频率分布直方图,并分析两班成绩的特征.。
一、选择题1.反映一组数据变化范围的是()A.极差B.方差C.众数D.平均数A解析:A【分析】根据极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围大小解答.【详解】解:反映一组数据变化范围的是极差;故选:A.【点睛】本题考查了极差、方差、众数以及平均数的概念和意义,掌握极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围是解题的关键.2.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,22C解析:C【解析】这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.3.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的()A.平均数改变,方差不变B.平均数改变,方差改变C.平均数不变,方差改变D.平均数不变,方差不变A解析:A【解析】试题分析:根据平均数、方差的计算公式即可判断.由题意得该数组的平均数改变,方差不变,故选A.考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.4.下图是2019年5月17日至31日某市的空气质量指数趋势图.(说明:空气质量指数为0-50、51-100、101-150分别表示空气质量为优、良、轻度污染)有如下结论:①在此次统计中,空气质量为优的天数少于轻度污染的天数;②在此次统计中,空气质量为优良的天数占45;③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差.上述结论中,所有正确结论的序号是()A.①B.①③C.②③D.①②③C解析:C【分析】根据折线统计图的数据,逐一分析即可.【详解】解:①中:当空气质量指数为0-50时表示优,数出折线图中在这个范围内的天数有5天;当空气质量指数为101-150是表示轻度污染,数出折线图中在这个范围内的天数有3天,故空气质量优的天数大于轻度污染的天数,故①错误;②中:空气质量指数在0-100范围内为优良,其天数共有12天,故空气质量为优良的天数所占比例为:124=155,故②正确;③中:20,21,22三日的空气质量指数波动范围小于26,27,28三日的空气质量指数波动范围,故20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差,故③正确.∴正确的有:②③.故答案为:C.【点睛】本题是复式折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题.5.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②C解析:C【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是()A.12岁B.13岁C.14岁D.15岁B 解析:B【解析】【分析】直接利用加权平均数的定义计算可得.【详解】解:该足球队队员的平均年龄是127131014315222⨯+⨯+⨯+⨯=13(岁),故选:B.【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.7.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):A.80,80B.81,80C.80,2D.81,2A解析:A【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【详解】根据题意得:805(81778082)80⨯-+++=(分),则丙的得分是80分;众数是80,故选A.【点睛】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.8.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数B解析:B【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.9.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是()A.中位数B.平均数C.方差D.极差A解析:A【分析】根据中位数的定义解答可得.【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选A.【点睛】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.10.甲、乙、丙、丁四位选手各进行了10次射击,射击成绩的平均数和方差如下表:则成绩发挥最不稳定的是( )A.甲B.乙C.丙D.丁D解析:D【解析】【分析】根据方差的定义,方差越小数据越稳定,反之波动越大.【详解】由表可知:3.00>2.50>1.00>0.25∴丁的方差最大,∴这四个人中,发挥最不稳定的是丁故选:D【点睛】本题考查方差的意义,熟知方差越小数据越稳定,反之波动越大是解题关键.二、填空题11.已知一组数据:x1,x2,x3,…,x n的平均数是2,方差是3,另一组数据:3x1﹣2,3x2﹣2,…3x n﹣2的方差是__________.27【分析】根据方差的定义得到把数据x1x2x3…xn都扩大3倍则方差扩大3的平方倍然后每个数据减2方差不变于是得到3x1﹣23x2﹣2…3xn﹣2的方差为27【详解】∵x1x2x3…xn的平均数是解析:27【分析】根据方差的定义得到把数据x1,x2,x3,…x n都扩大3倍,则方差扩大3的平方倍,然后每个数据减2,方差不变,于是得到3x1﹣2,3x2﹣2,…3x n﹣2的方差为27.【详解】∵x1,x2,x3,…x n的平均数是2,方差是3,∴3x1,3x2,…3x n的方差=3×32=27,∴3x1﹣2,3x2﹣2,…3x n﹣2的方差为27.故答案为27.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12.某单位要招聘1名英语翻译,对听、说、读、写进行素质测试,小张4项的分数分别为90分、85分、90分、80分.若把听、说、读、写的成绩按3:3:2:2计算,则小张的平均成绩为_____.865分【分析】根据加权平均数的定义计算可得【详解】解:小张的平均成绩为=865(分)故答案为:865分【点睛】本题考查了加权平均数解题的关键是掌握加权平均数的定义解析:86.5分【分析】根据加权平均数的定义计算可得.【详解】解:小张的平均成绩为90385390280210⨯+⨯+⨯+⨯=86.5(分),故答案为:86.5分.【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.13.商店某天销售了11件衬衫,其领口尺寸统计如下表:则这11件衬衫领口尺寸的中位数是________cm.40【分析】根据中位数的概念中位数是指将数据按大小顺序排列起来形成一个数列居于数列中间位置的那个数据再根据题中所给表格找出中位数【详解】将所卖衬衫按照领口尺寸从小到大排列后处于中间的衬衫领口尺寸为4解析:40【分析】根据中位数的概念,中位数,是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据,再根据题中所给表格,找出中位数.【详解】将所卖衬衫按照领口尺寸从小到大排列后,处于中间的衬衫领口尺寸为40cm,此中位数是40cm故答案:40【点睛】本题首先要掌握中位数的概念,能看懂题中所给表格,根据中位数的概念来解答的. 14.甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z-2所示,那么三人中成绩最稳定的是________.乙【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点解析:乙【分析】通过图示波动的幅度即可推出.【详解】通过图示可看出,一至三次甲乙丙中,乙最稳定,波动最小,四至五次三人基本一样,故选乙【点睛】考查数据统计的知识点15.一组数据:1,2,x,y,4,6,其中x<y,中位数是2.5,众数是2.则这组数据的平均数是______;方差是______.3【解析】【分析】由中位数及众数的定义和给定的条件求出xy的值然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差【详解】由一组数据12xy46的中位数是25众数是2则有x=2y=3∴这解析:3 8 3【解析】【分析】由中位数及众数的定义和给定的条件求出x,y的值,然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差. 【详解】由一组数据1,2,x ,y ,4,6的中位数是2.5,众数是2, 则有x=2,y=3,,∴这组数据的平均数为:12234636+++++=.∴这组数据的平均数为3;这组数据的方差为:22222218(13)(23)(23)(33)(43)(63)63⎡⎤-+-+-+-+-+-=⎣⎦. ∴这组数据的方差为83. 故答案为3;83. 【点睛】本题考查数据的平均数、中数、方差,掌握平均数、中数、方差的的定义是解题的关键. 16.某组数据的方差计算公式为S 2=18[(x 1﹣2)2+(x 2﹣2)2+…+(x 8﹣2)2],则该组数据的样本容量是_____,该组数据的平均数是_____.82【分析】样本方差S2=(x1-)2+(x2-)2+…+(xn-)2其中n 是这个样本的容量是样本的平均数利用此公式直接求解【详解】由于S2=(x1-2)2+(x2-2)2+…+(x8-2)2所以该解析:8 2 【分析】样本方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中n 是这个样本的容量,x 是样本的平均数.利用此公式直接求解. 【详解】由于S 2=18[(x 1-2)2+(x 2-2)2+…+(x 8-2)2], 所以该组数据的样本容量是8,该组数据的平均数是2. 故答案为8,2. 【点睛】此题考查方差的有关计算,解答此题的关键是熟练记住公式:S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2]中各个字母所代表的含义.17.某样本数据是:2,2,x ,3,3,6如果这个样本的众数为2,那么这组数据的方差是______2【解析】【分析】根据众数的概念确定x 的值再求该组数据的方差【详解】因为一组数据22x336的众数是2所以x=2于是这组数据为222336该组数据的平均数为:(2+2+2+3+3+6)=3方差S2=【解析】 【分析】根据众数的概念,确定x 的值,再求该组数据的方差. 【详解】因为一组数据2,2,x ,3,3,6,的众数是2,所以x=2.于是这组数据为2,2,2,3,3,6.该组数据的平均数为:16(2+2+2+3+3+6)=3, 方差S 2=16[(2-3)2+(2-3)2+(2-3)2+(3-3)2+(3-3)2+(6-3)2]=2. 故答案为:2. 【点睛】本题考查了平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”; ②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个; ③方差是用来衡量一组数据波动大小的量.18.设甲组数据:6,6,6,6,的方差为2s 甲,乙组数据:1,1,2的方差为2s 乙,则2s 甲与2s 乙的大小关系是________.与【分析】根据方差的意义进行判断【详解】解:因为甲组的数据都相等没有波动而乙组数有波动所以s 甲2<s 乙2故答案为s 甲2<s 乙2【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量方差越大则平解析:2s 甲与2s 乙 【分析】根据方差的意义进行判断. 【详解】解:因为甲组的数据都相等,没有波动,而乙组数有波动, 所以s 甲2<s 乙2. 故答案为s 甲2<s 乙2. 【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 19.某班七个兴趣小组人数分别为4,5,6,x ,6,7,7,已知这组数据的平均数是6,则这组数据的众数是______.7【解析】【分析】根据平均数的计算公式先求出x 的值再根据众数的定义求解即可【详解】根据题意知解得:则这组数据为4566777所以这组数据的众数为7故答案为:7【点睛】此题考查众数与平均数众数是一组数【解析】【分析】根据平均数的计算公式先求出x的值,再根据众数的定义求解即可.【详解】根据题意知4562x7267++⨯++⨯=,解得:x7=,则这组数据为4,5,6,6,7,7,7,所以这组数据的众数为7,故答案为:7.【点睛】此题考查众数与平均数,众数是一组数据中出现次数最多的数;平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.20.已知数据x1,x2,…,x n的方差是2,则3x1﹣2,3x2﹣2,…,3x n﹣2的方差为_____.18【解析】分析:根据数据都加上一个数(或减去一个数)时方差不变;数据都乘以同一个数时方差乘以这个数的平方即可得出答案详解:∵数据x1x2…xn的方差是2∴3x13x2…3xn的方差是32×2=18解析:18【解析】分析:根据数据都加上一个数(或减去一个数)时,方差不变;数据都乘以同一个数时,方差乘以这个数的平方即可得出答案.详解:∵数据x1,x2,…,x n的方差是2,∴3x1,3x2,…,3x n的方差是32×2=18,∴3x1-2,3x2-2,…,3x n-2的方差为18;故答案为:18.点睛:此题考查了方差,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变;当数据都乘以同一个数,方差乘以这个数的平方.三、解答题21.为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分.根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题:(1)扇形①的圆心角的大小是 度;(2)这40个样本数据的众数是_______;中位数是_______.(3)若该校九年级共有320名学生,估计该校理化实验操作得满分的学生人数. 解析:(1)36;(2)9; 8;(3)估计该校理化实验操作得满分的学生人数是56人. 【分析】(1)用360°乘以①所占的百分比,计算即可得解;(2)众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数分别解答; (3)用九年级总人数乘以满分的人数所占的份数计算即可得解. 【详解】(1)360°×(1-15%-27.5%-30%-17.5%) =360°×10% =36°; 故答案为:36;(2)∵9出现了12次,次数最多, ∴众数是9;∵将40个数字按从小到大排列,中间的两个数都是8,∴中位数是8882+=, 故答案为:9,8;(3)32017.5%56⨯=(人),估计该校理化实验操作得满分的学生人数是56人. 【点睛】本题考查条形统计图、扇形统计图、众数与中位数的意义、用样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.(1)这组成绩的众数是 ; (2)求这组成绩的方差;(3)若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.解析:(1)10;(2)87;(3)9环 【分析】(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案. (2)先求这组成绩的平均数,再求这组成绩的方差;(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数. 【详解】解:(1)在这7次射击中,10环出现的次数最多,故这组成绩的众数是10; (2)嘉淇射击成绩的平均数为:()1107101098997++++++=, 方差为:()()()()22221[109791091097-+-+-+-()()()2228998999]7+-+-+-=. (3)原来7次成绩为7 8 9 9 10 10 10, 原来7次成绩的中位数为9,当第8次射击成绩为10时,得到8次成绩的中位数为9.5, 当第8次射击成绩小于10时,得到8次成绩的中位数均为9, 因此第8次的射击成绩的最大环数为9环. 【点睛】本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、方差以及平均数的定义是解题的关键.23.甲、乙两人在相同条件下各立定跳远5次,距离如下(单位:cm ): 甲:225,230,240,230,225; 乙:220,235,225,240,230. (1)计算这两组数据的方差; (2)谁的跳远技术较稳定?为什么? 解析:(1)30;50(2)甲稳定;见解析.【分析】(1)根据平均数的计算公式先求出甲和乙的平均数,再代入方差公式()()()2221221=.....n S x x x x x x n ⎡⎤-+-++-⎢⎥⎣⎦,进行计算即可得出答案;(2)根据方差的意义,方差越小数据越稳定,即可得出答案. 【详解】 解:(1)甲的平均数是:()1225+230+240+230+225=2305cm ⨯, 乙的平均数是:()1220+235+240+230+225=2305cm ⨯, 甲的方差是:()()()()()22222221=225230230230240230230230225230305S cm ⎡⎤⨯-+-+-+-+-=⎣⎦,乙的方差是:()()()()()22222221=220230235230240230230230225230505S cm ⎡⎤⨯-+-+-+-+-=⎣⎦;(2)由(1)知,S 甲2<S 乙2, ∴甲的跳远技术较稳定. 【点睛】本题主要考查平均数与方差,熟练掌握方差及平均数的运算公式是解题的关键. 24.为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析. (1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析; 方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是__________.(填“方案一”、“方案二”或“方案三”) (2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内; ②估计该校1200名学生中达到“优秀”的学生总人数.解析:(1)方案三;(2)①该校1200名学生竞赛成绩的中位数落在9095x ≤<分数段内;②该校1200名学生中达到“优秀”的学生总人数为840人 【分析】(1)抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的.(2)①根据中位数的定义,即可求出这次竞赛成绩的中位数所落的分数段; ②用优秀率乘以该校共有的学生数,即可求出答案. 【详解】解:(1)要调查学生的答题情况,需要考虑样本具有广泛性与代表性,就是抽取的样本必须是随机的,则抽取的样本具有代表性的方案是方案三. 答案是:方案三;(2)①∵由表可知样本共有100名学生,∴这次竞赛成绩的中位数是第50和51个数的平均数, ∴这次竞赛成绩的中位数落在落在9095x ≤<分数段内; ∴该校1200名学生竞赛成绩的中位数落在9095x ≤<分数段内; ②由题意得:120070%840⨯=(人).∴该校1200名学生中达到“优秀”的学生总人数为840人. 【点睛】解决此题,需要能从统计表中获取必要的信息,根据题意列出算式是本题的关键,用到的知识点是抽样的可靠性,中位数的定义,用样本估计总体等.25.某校学生会向全校2400名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答系列问题:(1)本次接受随机抽样调查的学生人数为 人,图1中m 的值是 ; (2)求本次调查获取的样本数据的平均数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.解析:(1)50,32;(2)16,15;(3)768. 【分析】(1)根据题意由5元的人数及其所占百分比可得抽样调查的学生人数,用10元人数除以抽样调查的学生人数可得m 的值;(2)由题意根据统计图可以分别得到本次调查获取的样本数据的平均数和中位数; (3)由题意根据全校总人数捐款金额为10元的学生人数所占乘以抽样调查的学生人数的比例,即可估计该校本次活动捐款金额为10元的学生人数. 【详解】解:(1)本次接受随机抽样调查的学生人数为4÷8%=50人, ∵16100%32%50⨯=, 32m ∴=.故答案为:50;32.(2)本次调查获取的样本数据的平均数是:451610121510208301650⨯+⨯+⨯+⨯+⨯=(元);本次调查获取的样本数据的中位数是:15元.(3)估计该校本次活动捐款金额为10元的学生人数为2400×32%=768人. 【点睛】本题考查条形统计图和扇形统计图、用样本估计总体、平均数、中位数,解题的关键是明确题意,找出所求问题需要的条件.26.某校八年级有800名学生,在一次跳绳模拟测试中,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为______,扇形统计图中m 的值为______. (2)本次调查获取的样本数据的众数是_____(分),中位数是_____(分). (3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?解析:(1)50;28;(2)12,11;(3)八年级模拟体测中得12分的学生约有256人. 【分析】(1)根据得8分的学生人数和所占的百分比可以求得本次调查的人数,然后根据扇形统计图中的数据可以求得m 的值;(2)根据统计图中的数据可以求得本次调查获取的样本数据的众数和中位数; (3)根据统计图中的数据可以计算出我校九年级模拟模拟体测中得12分的学生约有多少人. 【详解】:(1)本次抽取到的学生人数为:4÷8%=50,m%=1-8%-10%-22%-32%=28%, 故答案为:50,28;(2)本次调查获取的样本数据的众数是12分,中位数是11分; (3)800×32%=256人;答:八年级模拟体测中得12分的学生约有256人; 【点睛】此题考查扇形统计图、条形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答.27.某校为了分析九年级学生艺术考试的成绩,随机抽查了两个班级的各5名学生的成绩,它们分别是:九(1)班:96,92,94,97,96 九(2)班:90,98,97,98,92 通过数据分析,列表如下:(1)__________;__________a b ==(2)计算两个班级所抽取的学生艺术成绩的方差,判断哪个班学生艺术成绩比较稳定. 解析:(1)96;98;(2)九(1)班的学生的艺术成绩比较稳定. 【分析】(1)根据中位数和众数的定义求解可得;(2)根据方差公式计算,再依据方差越小成绩越稳定可得答案. 【详解】(1)九(1)班成绩重新排列为92,94,96,96,97, 则中位数a=96,九(2)班成绩的众数为b=98; 故答案为:96,98; (2)S 2(1)班=15×[(96-95)2+(92-95)2+(94-95)2+(97-95)2+(96-95)2]=3.2, S 2(2)班=15×[(90-95)2+(98-95)2+(97-95)2+(98-95)2+(92-95)2]=11.2, ∵S 2(1)班<S 2(2)班,∴九(1)班学生的艺术成绩比较稳定. 【点睛】此题考查中位数、众数和方差的意义,解题关键在于掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.28.下表是随机抽取的某公司部分员工的月收入资料.(1)请计算样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;并指出谁的推断比较科学合理,能直实地反映公司全体员工月收入水平.解析:(1)平均数:6150元;中位数:3200元;(2)乙推断比较科学合理,答案见解析. 【分析】(1)要求平均数只要求出各个数据之和再除以数据个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可; (2)甲从员工平均工资水平的角度推断公司员工月收入,乙从员工中间工资水平的角度推断公司员工的收入; 【详解】 解:(1)平均数:450001180001100001550035000634001300011200026150111361112⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=+++++++。
28.5 表示一组数据分布的量一、单选题A.5B.6C.7D.8【答案】D【分析】用总人数减去其他三组的人数即为所求频数.【解析】解:20-3-5-4=8,故组界为99.5~124.5这一组的频数为8,故选:D.【点睛】本题考查频数分布直方图,能够根据要求读出相应的数据是解决本题的关键.7.已知一组数据:6,7,8,8,8,9,9,9,10,10,10,10,10,11,11,11,12,12,12,13,若以2为组距,则可以分成()A.6组B.5组C.4组D.3组【答案】C【分析】求出数据中做最大值和最小值的差,然后除以组距,小数部分要进一位即为组数.【解析】解:在这组数据中最大值为13,最小值为6,它们的差为:13-6=7,∵组距为2,∴组数=7÷2=3.5,所以可以分成4组,故选:C.【点睛】本题主要考查频数分布直方图,熟知频数分布直方图的画法,分组方法是解题的关键.8.将100个数据分成①-⑧组,如下表所示:A.35kg B.170kg【答案】C【分析】用总质量乘以质量不小于20g【解析】解:估计500kg草莓中“大果”故选:C.【点睛】本题主要考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,二、填空题【答案】0.2【分析】根据频数分布直方图可知组距为10可求解.【解析】设60~70的频率/组距为:x ,由题意得(100.0050.0100.0300.035x ´++++解得:0.02x =,三、解答题19.对一批成品衬衣进行抽检,获得如下频率、频数分布表:【答案】(1)40名;(2)约有104名;【分析】(1)利用五组频率之和为1,求出最后一组的频率,从而求出共抽取的学生数;(2)根据成绩超过80分的组频率之和,乘以(3)利用加权平均数求出即可.【解析】解:(1)最后一组的频率为请根据所给信息,解答下列问题:(1)a= ,b= ;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)的为少人?(3)一共有200个数据,按照从小到大的顺序排列后,第所以这次比赛成绩的中位数会落在80£故答案为:8090£<x´=(人).(4)30000.401200即该校参加这次比赛的3000名学生中成绩【点睛】本题考查频数(率)分布直方图,解题的关键是利用统计图获取信息,掌握用样本估计总体的方(1)此次调查的总体是__________,样本容量是__________.(2)若从9年级某学习加强班进行抽样调查,则这样的调查________(“合适”,“不合适”),原因是样本不是________样本;(3)根据图表1,估计该校对篮球感兴趣的学生的总人数为_____;(4)根据图表2,若从左至右依次是第一、二、三、四、五组,则中位数落在第___组.(5)若要从对篮球感兴趣的同学中选拔出一支篮球队来,现在有以下两名学生的投篮数据,记录的是每10次投篮命中的个数.甲同学:10、5、7、9、4;乙同学:7、8、7、6、7.若想要选择更稳定的同学,你会选择计算这两组数据的________,因为这个量可以代表数据的________.请计算出你所填写的统计量,并且根据计算的结果,选择合适的队员.【答案】(1)某区3200名学生放学后在校体育运动的情况,40(2)不合适;随机抽样(3)240(4)三(5)方差;离散程度;选择乙【分析】(1)根据总体及样本容量的相关概念可直接进行求解;(2)由题意可直接求解;(3)由图表1及题意可直接进行求解;(4)由题意知一共抽取40名学生进行调查,则将数据从小到大排列,第20,21和的平均数即为中位数,进而根据图表2可求解;(5)根据题意可求出方差,然后问题可求解.【解析】(1)解:总体是指要调查对象的全体,所以此次调查的总体是某区3200名学生放学后在校体育运(1)根据以上图表,回答下列问题:(1)请你根据上述频率分布直方图及表格完成下面的填空:这个地区11月份空气为轻度污染的天数是________.(2)为了进一步改善生活环境和空气质量,提高人民的生活质量,当地政府计划从积.已知2022年底该地区的绿化面积为化面积增加了50%,假设这两年绿化面积的年增长率相同,求这两年中绿化面积每年的增长率(精确到0.01)(参考数据:2 1.414»,3»【答案】(1)3,12,9,0.4,0.3(2)0.22正正。
概率统计抽签考试(二)题签号:11在四台不同的纺织机上,有3种不同的加压水平,在每种加压水平和每台机器中各取一个试样测量,得纱支强度如表,问不同加压水平和不同机器之间有无显著差异?2、钢厂的铁水含碳量在正常状态下服从正态分布均值是4. 30。
现在又测了10炉铁水,其含碳量为:4.28 4.40 4.42 4.35 4.37 4.25 4.50 4.62 4.22 4.40 总体均值是否有变化?(, =0.035)概率统计抽签考试(二)题签号:21、设有四种不同品种的种子和5种不同的施肥方案,有20块同样面积的地,分别采用4种品种的种子和5种施肥方案搭配进行试验,获得收获量的数据如表;试问种子的品种对收获量是否有影响?施肥方案对收获量是否有影响?2、环境保护委员会分别对16辆不同型号汽车消耗一加仑汽油所行的里程调查后记录如下:33.2 37.4 37.5 33.6 40.5 36.5 37.6 33.936.4 37.7 37.7 40.0 34.2 36.2 37.9 40.2假设里程数服从正态分布,试检验其均值是否为38.5?〉=0.025概率统计抽签考试(二)题签号:31考察四种催化剂对某种化工产品中某成分浓度的影响是否有显著性?试验数据如下:2、环境保护委员会分别对16辆不同型号汽车消耗一加仑汽油所行的里程调查后记录如下:36.0 37.9 35.9 38.2 38.3 35.7 35.635.1 39.738.5 39.0 35.5 34.8 38.6 39.4 35.334.4 38.8假设里程数服从正态分布,试检验其均值是否为37?=0.045概率统计抽签考试(二)题签号:41、将20头猪仔随即地分成四组,每组5头,每组给一种饲料,在一定长时间内每头猪增重(公斤)如下表,问这四种饲料对猪仔增重有无显著影响?2、一面粉制造厂接到许多顾客的订货,厂内采用自动流水线灌装面粉,按每袋250斤出售。
一、选择题1.反映一组数据变化范围的是()A.极差B.方差C.众数D.平均数A解析:A【分析】根据极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围大小解答.【详解】解:反映一组数据变化范围的是极差;故选:A.【点睛】本题考查了极差、方差、众数以及平均数的概念和意义,掌握极差是刻画数据离散程度的一个统计量.它能反映数据的波动范围是解题的关键.2.某校以“我和我的祖国”为主题的演讲比赛中,共有10位评委分别给出某选手的原始评分,在评定该选手成绩时,则从10个原始评分中去掉1个最高分和1个最低分,得到8个有效评分. 8个有效评分与10个原始评分相比,不变的是()A.平均数B.极差C.中位数D.方差C解析:C【分析】根据题意,由数据的数字特征的定义,分析可得答案.【详解】根据题意,从10个原始评分中去掉1个最高分、1个最低分,得到8个有效评分,8个有效评分与10个原始评分相比,最中间的两个数不变,即中位数不变,故选C.【点睛】本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法.3.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,22C解析:C这组数据中,21出现了10次,出现次数最多,所以众数为21, 第15个数和第16个数都是22,所以中位数是22. 故选C.4.某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是( ) A .88.5 B .86.5C .90D .90.5A解析:A 【分析】根据加权平均数的计算公式,用95分,90分,85分别乘以它们的百分比,再求和即可. 【详解】根据题意得:95×20%+90×30%+85×50%=88.5(分), 即小彤这学期的体育成绩为88.5分. 故选A . 【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键. 5.给出下列命题:①三角形的三条高相交于一点;②如果一组数据中有一个数据变动,那么它的平均数、众数、中位数都随之变动; ③如果不等式()33m x m ->-的解集为1x <,那么3m <;④如果三角形的一个外角等于与它相邻的一个内角则这个三角形是直角三角形; 其中正确的命题有( ) A .1个 B .2个C .3个D .4个B解析:B 【分析】根据三角形的高、平均数、众数、中位数的定义、不等式的基本性质和邻补角的定义逐一判断即可. 【详解】①钝角三角形的三条高不相交(三条高所在的直线交于一点),故错误;②如果一组数据中有一个数据变动,那么它的平均数会随之变动,但众数和中位数不一定变动,故错误;③如果不等式()33m x m ->-的解集为1x <,可得m -3<0,那么3m <,故正确; ④如果三角形的一个外角等于与它相邻的一个内角,根据邻补角的定义可得这个外角和与它相邻的一个内角之和为180°, ∴三角形的这个内角为180°÷2=90° 则这个三角形是直角三角形,故正确. 综上:正确的有2个【点睛】此题考查的是三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质,掌握三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质是解决此题的关键.6.某校篮球队10名队员的年龄情况如下,则篮球队队员年龄的众数和中位数分别是( )A .15,15B .14,15C .14,14.5D .15,14.5D解析:D 【分析】众数就是出现次数最多的数,而中位数就是大小处于中间位置的数,根据定义即可求解. 【详解】在这10名队员的年龄数据里,15岁出现了4次,次数最多,因而众数是15; 10名队员的年龄数据里,第5和第6个数据分别为14,15,其平均数141514.52+=,因而中位数是14.5. 故选:D . 【点睛】本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数. 7.一组数据,,,,,,a b c d e f g 的平均数是m ,极差是k ,方差是n ,则23,23,23,23,23,23------a b d e f g 的平均数、极差、和方差分别是( )A .222、、m k nB .23232m k n --、、C .232-、、4m k nD .2323--、、4m k n C解析:C 【分析】根据平均数、极差和方差的变化规律即可得出答案. 【详解】∵数据a 、b 、c 、d 、e 、f 、g 的平均数是m ,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2m−3; ∵数据a 、b 、c 、d 、e 、f 、g 的极数是k ,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2k ; ∵数据a 、b 、c 、d 、e 、f 、g 的方差是n ,∴数据2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的方差是224n n;故选C.【点睛】此题考查方差、极差、算术平均数,解题关键在于掌握方差、极差、算术平均数变化规律即可.8.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。
28.3 表示一组数据平均水平的量(2)[中位数、众数和截尾平均数]第一组28-71、一个学习小组共有10人,20岁的4人,18岁的2人,21岁的2人,17岁的1人,25岁的1人,下列判断正确的有()个。
①小组成员的平均年龄是20.2岁;②小组成员的平均年龄是20岁;③小组成员年龄的中位数是20岁;④小组成员年龄的中位数是20.5岁A、0B、1C、2D、32、把97个数据从小到大排列,中位数是第个数据。
3、若1、2、3、a的平均数为5,则a的值是。
4、数据0.5,0.8,0.9,1.0的中位数是。
,平均数是。
6、某班组织一次数学测试,全班学生成绩的分布情况如图28-7-1:某班数学成绩统计图全班学生数学成绩的众数是分,全班学生数学成绩为众数的有人,全班学生成绩的中位数是分。
学生数O图 28 - 7 - 17、在一场演唱比赛中,十位评委给一名歌手的演唱打分如下:9.73,9.66,9.83,9.89,9.76,9.86,9.79,9.85,9.68,9.74.若去掉一个最高分和一个最低分,求这名歌手的最后得分(截尾平均数)。
8、贵阳市某中学开展“八荣八耻”为主题的社会主义荣辱观教育活动,举办了讲演、书法、作文、手抄报、小品、漫画六项比赛(每个同学限报一项),学生参加情况如下表:认真观察阅读统计表后,回答下列问题: (1)请补充完成这个统计表;(2)本次参加比赛的总人数是人,本次比赛项目的众数是 ;(3)手抄报作品与漫画作品的获得人数分别是6人和3人,你认为“手抄报作品比漫画作品的获奖率高”这种说法是否正确。
9、小红的爸爸为了了解小红这学期在家看电视时间,随机挑选了某个星期对小红进行观察,并记录了她看电视的时间(分): (1)请分别计算小红这周内在家看电视时间的平均数和中位数;(2)你认为应选中位数平均数中哪一个表示小红这一周在家看电视的时间更好?为什么? (3)你认为能否用(2)的数据表示本学期小红在家看电视的一般时间?为什么?10、某初二年级320名学生在进行电脑培训的前后各参加一次水平相同的考试,考分都以统一标准划分成“不合格”、“合格”、“优秀”三个等级,为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图28-7-2所示。