28.5(2)表示一组数据分布的量
- 格式:ppt
- 大小:513.50 KB
- 文档页数:10
28.5(2) 表示一组数据分布的量重点:频率分布直方图的绘制步骤以及从频率分布直方图中获取信息 难点:从频率分布直方图中获取信息【教学流程】【学习导航】一、学习准备:1.为统计八年级某班全体学生英语学科期末考试成绩,制作了如下频数分布表(1)请完成这个频数分布表. (2)数据分组时的组距为__________,最大值和最小值的差最多为_______.(3)从频数分布表中可获得那些信息?(4)80分(包括80)以上人数占全班人数的百分比是____________ 二、新课探索:1、如下图,分别是A 班、B 班学生参加环保知识竞赛的成绩的频数分布直方图,根据图中信息该如何比较A 、B 两班参赛学生成绩的分布情况?A 学生有_____人,B 班学生有_____人.直接从个小组的频数比较两班的参赛成绩的分布情况比较困难.如果将每小组的频数除以全班数据总的个数,就可以得到各小组数据频数与全组数据总个数的比值,我们把这个比值叫做_______.全组数据的总个数小组中数据的频数组频率由于组频率表示比值大小,因此可以用组频率来比较两个人数______的两个班级学生成绩的分布情况.将频数分布表扩充到频率分布表:从频率分布表可比较A、B两班参赛学生成绩的分布情况.2.各小组的频率和为_____.3.如何画频率分布直方图?为了解学生用于阅读课外书籍的时间的情况,某校对九年级(1)班40名学生每周阅读课外书籍所用的时间进行统计.调查结果如下(时间单位:小时):1.5, 3.5 ,9.0 ,5.0 ,4.5, 3.0 ,6.0,2.5 ,5.5 ,5.5 ,4.0, 3.0, 2.0, 6.5, 8.0, 2.5, 8.5, 7.0, 6.5, 4.0,9.5, 1.0, 4.0, 3.5, 7.5, 7.0, 1.0, 6.0, 0.0, 5.0,2.0, 5.5, 8.5, 6.0, 4.5, 4.0, 7.0, 6.0, 5.5, 9.0.填写频率分布直方图:在频率分布直方图中,用每小组的小矩形的面积表示该小组的组频率.频率纵轴表示:组距横轴:与频数分布直方图相同.组距频率________________________________每个小长方形的面积=_________________ 所有小长方形的面积和=____________4.对于人口、身高、体重等问题,我们可以通过大容量的随机样本的分布来推断总体的分布.例.为了了解全区6000名初中毕业生的体重情况,随机抽测了400名学生的体重,统计结果列表如下:(1)计算组频率,填入表内.(2)画出样本的频率分布直方图.(3)估计全区初中毕业生中体重小于60千克且不小于50千克的学生有_________人.三、课内小结:1. ______________________________________________叫做组频率.2. 频率分布直方图的横轴是指________________________________________;纵轴是指________________________________________________________. 3.各小矩形的面积为该小组的__________;各小矩形的面积和等于___________.【课内检测】1. 某中学数学教研组有25名教师,将他们按年龄分成三个小组,在38-45(岁)小组内有8名教师,那么这个小组的组频率是____________.2. 填写频率分布表中为完成部分. 思考:根据已知数据可先求什么?3.某商店上个月第一周五种不同品牌牙膏的售出量的频数分布如下:1)品牌A牙膏的频数是________,它的实际意义是_______________________2)品牌D牙膏的频率是________,它的实际意义是_______________________4.将学习导航1中A、B两班学生参加环保知识竞赛的成绩情况,编制频率分布表,画出相应频率分布直方图,并分析两班成绩的特征.。
2020-2021学年湖南省郴州市永兴县八年级(下)期末数学试卷一、选择题(共8小题,每小题3分)1.下列由a、b、c三边组成的三角形不是直角三角形的是()A.a=1、b=1、c=B.a=5、b=12、c=13C.a=6、b=8、c=9D.a=4、b=5、c=2.在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥3.下列四个图案中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.△ABC中,AB=6,BC=5,AC=7,点D、E、F分别是三边的中点,则△DEF的周长为()A.5B.9C.10D.185.关于点P(﹣3,4),下列说法正确的个数有()(1)点P到x轴的距离为4;(2)点P到y轴的距离为﹣3;(3)点P在第四象限;(4)点P到原点的距离为5;(5)点P关于x轴的对称点的坐标是(﹣3,﹣4).A.2个B.3个C.4个D.5个6.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元7.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s 与t之间的关系的大致图象是()A.B.C.D.8.在矩形ABCD中,一条直线将矩形任意分为两部分,设这两部分图形的内角和分别为x、y,则x+y的和是()A.360°、540°、720°B.360°、540°C.540°、720°D.360°、720°二、填空题(共8小题,满分24分,每小题3分)9.如图,在Rt△ABC中,∠ACB=90°,∠A=48°,点D是AB延长线上的一点,则∠CBD的度数是°.10.现将一组数据:21,25,23,25,27,29,25,30,28,29,26,24,27,25,26,22,24,25,26,28分成五组,其中26.5<x<28.5的频数是.11.已知一次函数y=kx+6的图象经过点A(2,﹣2),则k的值为.12.如图,若在象棋棋盘上建立平面直角坐标系,使“兵”位于点(1,0),“炮”位于点(﹣1,1),则“马”位于点.13.一个多边形的内角和是外角和的3倍,则这个多边形的边数是.14.矩形的一条对角线长为4,对角线的夹角其中一个为60°,该矩形的周长为.15.如图,两个边长为a的正方形重叠,其中一个的顶点在另一个的对角线的交点上,则重叠部分的面积为平方单位.16.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE ⊥AB于E,OF⊥AD于F.则OE+OF=.三、解答题(共10小题,17~19题每题6分,20~23每题8分,24~25每题10分,26题12分,满分82分)17.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,求证:BE=CF.18.如图,为了测算出学校旗杆的高度,小明将升旗的绳子拉到旗杆底端,并在与旗杆等长的地方打了一个记号,然后将绳子底端拉到离旗杆底端5米的地面处,发现此时绳子底端距离记号处1米,则旗杆的高度是多少米?19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣4,﹣1),B(﹣2,﹣4),C(﹣1,﹣2).(1)请画出△ABC向右平移5个单位后得到的△A1B1C1;(2)请画出△ABC关于x轴对称的△A2B2C2;(3)分别写出△A2B2C2三个顶点的坐标.20.某商店一种玩具定价为15元,商店为了促销于是打出广告:凡购买6个以上者则超过6个的部分一律打八折.(1)如果购买款用y(元)表示,购买数量用x(个)表示,求出y与x之间的函数关系式;(2)当x=4、x=8时,购买款分别是多少元?21.如图,在Rt△ABC中,∠BAC=90°,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、E,连接EC.求证:(1)四边形ABDE是平行四边形;(2)四边形ADCE是菱形.22.某班学生的期中成绩(成绩为整数)的频数分布表如下,请根据表中提供的信息回答下列问题:分组频数频率49.5<x<59.520.0459.5<x<69.56m69.5<x<79.5n0.4479.5<x<89.5150.389.5<x<99.55p合计q 1.0(1)m=,n=,p=,q=;(2)在表内,频率最小的一组的成绩范围是;(3)成绩优秀的学生有人(成绩大于或等于80分为优秀).(4)你认为该班学生的学习成绩怎么样?根据数据说明你的看法.23.周六王华骑电动车从家出发去张明家,当他骑了一段路时,想起要帮张明买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往张明家,如图是他离家的路程与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)王华家到张明家的路程是多少米?(2)王华在新华书店停留了多长时间?(3)买到书后,王华从新华书店到张明家骑车的平均速度是多少?(4)本次去张明家途中,王华一共行驶了多少米?24.如图所示,直线l1:y=﹣x﹣4与x轴交于点A,与y轴交于点B,将直线l1向上平移6个单位得到直线l2与y轴交于点C,已知直线l3:y=x+c经过点C且与直线l1交于点D,连接AC.(1)直接写出A、B、C三点的坐标;(2)求直线l3的解析式;(3)求△ACD的面积.25.如图,在△ABC中,∠BAC=90°,AB=AC,点D是直线BC上一动点(不与端点重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:CF⊥BC;(2)如图2,当点D在线段BC延长线上时,CF⊥BC还成立吗?如成立请证明,如不成立请说明理由;(3)在图1、图2中,选择一个图形证明:BD2+CD2=2AD2.26.如图,矩形OABC的顶点O在平面直角坐标系的原点,点A(6,0)、C(0,2)分别在坐标轴上,直线l的解析式为y=﹣x.(1)求矩形OABC对角线交点M的坐标;(2)直线l以每秒1个单位的速度向右平移,平移到经过顶点B停止.①求直线l经过点B时的函数关系式,作出它的图象,并指出当x取何值时,y<0;②设直线l在平移过程中扫过矩形OABC的面积为y,l平移的时间为x,求y与x的函数关系式.参考答案一、选择题(共8小题,满分24分,每小题3分)1.下列由a、b、c三边组成的三角形不是直角三角形的是()A.a=1、b=1、c=B.a=5、b=12、c=13C.a=6、b=8、c=9D.a=4、b=5、c=解:A、12+12=()2,符合勾股定理的逆定理,故本选项不符合题意;B、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;C、62+82≠92,不符合勾股定理的逆定理,故本选项符合题意;D、52+42=()2,符合勾股定理的逆定理,故本选项不符合题意.故选:C.2.在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥解:在函数y=中,自变量x的取值范围是x≤,故选:B.3.下列四个图案中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.解:A、是中心对称图形,但不是轴对称图形.故本选项符合题意;B、是轴对称图形,不是中心对称图形.故本选项不合题意;C、是轴对称图形,不是中心对称图形.故本选项不合题意;D、是轴对称图形,不是中心对称图形.故本选项不合题意.故选:A.4.△ABC中,AB=6,BC=5,AC=7,点D、E、F分别是三边的中点,则△DEF的周长为()A.5B.9C.10D.18解:∵点D,E分别AB、BC的中点,AC=7,∴DE=AC=3.5,同理,DF=BC=2.5,EF=AB=3,∴△DEF的周长=DE+EF+DF=9,故选:B.5.关于点P(﹣3,4),下列说法正确的个数有()(1)点P到x轴的距离为4;(2)点P到y轴的距离为﹣3;(3)点P在第四象限;(4)点P到原点的距离为5;(5)点P关于x轴的对称点的坐标是(﹣3,﹣4).A.2个B.3个C.4个D.5个解:如图所示:(1)点P到x轴的距离为4,故(1)正确;(2)点P到y轴的距离为3,故(2)错误;(3)点P在第二象限,故(3)错误;(4)点P到x轴的距离为4,点P到y轴的距离为3,根据勾股定理可得,点P到原点的距离为5,故(4)正确;(5)点P关于x轴的对称点的坐标是(﹣3,﹣4),故(5)正确.所以正确的个数有3个.故选:B.6.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元解:根据图形所给出的数据可得:捐款额为15~20元的有20人,人数最多,则捐款人数最多的一组是15﹣20元.故选:C.7.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s 与t之间的关系的大致图象是()A.B.C.D.解:由题意,随着抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.故选:D.8.在矩形ABCD中,一条直线将矩形任意分为两部分,设这两部分图形的内角和分别为x、y,则x+y的和是()A.360°、540°、720°B.360°、540°C.540°、720°D.360°、720°解:分三种情况:①一条直线将矩形分为两个三角形,如图1所示:则x+y=180°+180°=360°;②一条直线将矩形分为一个三角形和一个四边形,如图2所示:则x+y=180°+360°=540°;③一条直线将矩形分为两个四边形,如图3所示:则x+y=360°+360°=720°;综上所述,x+y的和是360°或540°或720°,故选:A.二、填空题(共8小题,满分24分,每小题3分)9.如图,在Rt△ABC中,∠ACB=90°,∠A=48°,点D是AB延长线上的一点,则∠CBD的度数是138°.解:∵∠ACB=90°,∠A=48°,∴∠CBD=∠ACB+∠A=90°+48°=138°,故答案为138.10.现将一组数据:21,25,23,25,27,29,25,30,28,29,26,24,27,25,26,22,24,25,26,28分成五组,其中26.5<x<28.5的频数是4.解:这组数据中26.5<x<28.5的数据,即是数据27、28出现的次数,通过统计数据27、28共出现4次,故答案为:4.11.已知一次函数y=kx+6的图象经过点A(2,﹣2),则k的值为﹣4.解:把点A(2,﹣2)代入y=kx+6,得﹣2=2k+6,解得k=﹣4.故答案为:﹣4.12.如图,若在象棋棋盘上建立平面直角坐标系,使“兵”位于点(1,0),“炮”位于点(﹣1,1),则“马”位于点(4,﹣2).解:建立平面直角坐标系如图所示,“马”位于点(4,﹣2).故答案为:(4,﹣2).13.一个多边形的内角和是外角和的3倍,则这个多边形的边数是八.解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为:八.14.矩形的一条对角线长为4,对角线的夹角其中一个为60°,该矩形的周长为4+4.解:如图,∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠ABC=90°,AC=BD=4,AO=OC=AC=2,OB=OD=2,∴AO=OB=2,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=2=CD,在Rt△ABC中,由勾股定理得:BC===2,∴矩形ABCD的周长=2(AB+BC)=4+4,故答案为:4+4.15.如图,两个边长为a的正方形重叠,其中一个的顶点在另一个的对角线的交点上,则重叠部分的面积为平方单位.解:如图,∵四边形ABCD是正方形,∴BO=CO=DO,∠BDC=∠BCO=45°,AC⊥BD,∴∠DOC=∠EOF=90°,∴∠DOE=∠COF,在△COF和△DOE中,,∴△COF≌△DOE(ASA),∴S△COF=S△DOE,∴四边形OECF的面积=S△OCD=S正方形ABCD=a2,∴重叠部分的面积为a2,故答案为a2.16.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE ⊥AB于E,OF⊥AD于F.则OE+OF=9.6.解:如图,连接AC交BD于点G,连接AO,∵四边形ABCD是菱形,∴AC⊥BD,AB=AD=10,BG=BD=8,根据勾股定理得:AG===6,∵S△ABD=S△AOB+S△AOD,即BD•AG=AB•OE+AD•OF,∴16×6=10OE+10OF,∴OE+OF=9.6.故答案为:9.6.三、解答题(共10小题,17~19题每题6分,20~23每题8分,24~25每题10分,26题12分,满分82分)17.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,求证:BE=CF.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F.∴DE=DF,∠DEB=∠DFC=90°,∵AB=AC,AD平分∠BAC,∴AD是BC边上的中线,∴BD=CD,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴BE=CF.18.如图,为了测算出学校旗杆的高度,小明将升旗的绳子拉到旗杆底端,并在与旗杆等长的地方打了一个记号,然后将绳子底端拉到离旗杆底端5米的地面处,发现此时绳子底端距离记号处1米,则旗杆的高度是多少米?解:如图,设旗杆的高度为xm,则AC=x m,AB=(x+1)m,BC=5 m,在Rt△ABC中,52+x2=(x+1)2,解得x=12,答:旗杆的高度是12 m.19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣4,﹣1),B(﹣2,﹣4),C(﹣1,﹣2).(1)请画出△ABC向右平移5个单位后得到的△A1B1C1;(2)请画出△ABC关于x轴对称的△A2B2C2;(3)分别写出△A2B2C2三个顶点的坐标.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)A2(﹣4,1),B2(﹣2,4),C2(﹣1,2).20.某商店一种玩具定价为15元,商店为了促销于是打出广告:凡购买6个以上者则超过6个的部分一律打八折.(1)如果购买款用y(元)表示,购买数量用x(个)表示,求出y与x之间的函数关系式;(2)当x=4、x=8时,购买款分别是多少元?解:(1)由题意可得,当0<x≤6时,y=15x,当x>6时,y=15×6+(x﹣6)×15×0.8=12x+18,由上可得,y与x的函数关系式为y=;(2)当x=4时,y=15×4=60,当x=8时,y=12×8+18=114,答:当x=4,x=8时,货款分别为60元,114元.21.如图,在Rt△ABC中,∠BAC=90°,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、E,连接EC.求证:(1)四边形ABDE是平行四边形;(2)四边形ADCE是菱形.【解答】证明:(1)∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形;(2)由(1)得:AE=BD,∵AD是边BC上的中线,∴BD=CD,∴AE=CD,∴四边形ADCE是平行四边形,又∵∠BAC=90°,AD是边BC上的中线,∴AD=BC=CD,∴平行四边形ADCE是菱形.22.某班学生的期中成绩(成绩为整数)的频数分布表如下,请根据表中提供的信息回答下列问题:分组频数频率49.5<x<59.520.0459.5<x<69.56m69.5<x<79.5n0.4479.5<x<89.5150.389.5<x<99.55p合计q 1.0(1)m=0.12,n=22,p=0.1,q=50;(2)在表内,频率最小的一组的成绩范围是49.5<x<59.5;(3)成绩优秀的学生有20人(成绩大于或等于80分为优秀).(4)你认为该班学生的学习成绩怎么样?根据数据说明你的看法.解:(1)∵q=2÷0.04=50,∴m=6÷50=0.12,n=50×0.44=22,p=5÷50=0.1,故答案为:0.12、22、0.1、50;(2)在表内,频率最小的一组的成绩范围是49.5<x<59.5,故答案为:49.5<x<59.5;(3)成绩优秀的学生人数为15+5=20(人),故答案为:20;(4)成绩很好,理由:优秀人数多,有20人(答案不唯一).23.周六王华骑电动车从家出发去张明家,当他骑了一段路时,想起要帮张明买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往张明家,如图是他离家的路程与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)王华家到张明家的路程是多少米?(2)王华在新华书店停留了多长时间?(3)买到书后,王华从新华书店到张明家骑车的平均速度是多少?(4)本次去张明家途中,王华一共行驶了多少米?解:(1)根据函数图象,可知王华家到张明家的路程是4800米;(2)24﹣16=8(分钟).所以王华在新华书店停留了8分钟;(3)王华从新华书店到张明家的路程为4800﹣3000=1800米,所用时间为28﹣24=4分钟,小王华从新华书店到张明家骑车的平均速度是:1800÷4=450(米/分);(4)根据函数图象,王华一共行驶了4800+2×(4000﹣3000)=6800(米).24.如图所示,直线l1:y=﹣x﹣4与x轴交于点A,与y轴交于点B,将直线l1向上平移6个单位得到直线l2与y轴交于点C,已知直线l3:y=x+c经过点C且与直线l1交于点D,连接AC.(1)直接写出A、B、C三点的坐标;(2)求直线l3的解析式;(3)求△ACD的面积.解:(1)在y=﹣x﹣4中,令y=0,则0=﹣x﹣4,解得x=﹣3,∴A(﹣3,0),令x=0,则y=﹣4,∴B(0,﹣4),将直线l1向上平移6个单位长度,得直线l2:y=﹣x+2,令x=0,则y=2,∴C(0,2);(2)∵点C在直线l3:y=x+c上,∴c=2,∴直线l3的解析式为y=x+2;(3)解得,∴D(﹣,﹣2),∵BC=OB+OC=6,∴S△ACD=S△ABC﹣S△BCD=﹣=.25.如图,在△ABC中,∠BAC=90°,AB=AC,点D是直线BC上一动点(不与端点重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:CF⊥BC;(2)如图2,当点D在线段BC延长线上时,CF⊥BC还成立吗?如成立请证明,如不成立请说明理由;(3)在图1、图2中,选择一个图形证明:BD2+CD2=2AD2.【解答】(1)证明:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=90°,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF,在△ABD和△ACF中,,∴∠B=∠ACB=45°,∴△ABD≌△ACF(SAS),∴∠B=∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90°,∴CF⊥BC;(2)解:CF⊥BC还成立,证明如下:同(1)得:△ABD≌△ACF(SAS),∴∠B=∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90°,∴CF⊥BC;(3)证明:图1中,连接DF,由(1)可知,BD=CF,∠BCF=90°,∴CF2+CD2=DF2,∴BD2+CD2=DF2,∵∠DAF=90°,AD=AF,∴AD2+AF2=DF2,∴2AD2=DF2,∴BD2+CD2=2AD2;图2中,连接DF,由(2)得:BD=CF,CF⊥BC,∴∠DCF=90°,∴CF2+CD2=DF2,∴BD2+CD2=DF2,∵∠DAF=90°,AD=AF,∴AD2+AF2=DF2,∴2AD2=DF2,∴BD2+CD2=2AD2.26.如图,矩形OABC的顶点O在平面直角坐标系的原点,点A(6,0)、C(0,2)分别在坐标轴上,直线l的解析式为y=﹣x.(1)求矩形OABC对角线交点M的坐标;(2)直线l以每秒1个单位的速度向右平移,平移到经过顶点B停止.①求直线l经过点B时的函数关系式,作出它的图象,并指出当x取何值时,y<0;②设直线l在平移过程中扫过矩形OABC的面积为y,l平移的时间为x,求y与x的函数关系式.解:(1)四边形OABC是矩形,∴对角线交点M是AC的中点,∵点A(6,0)、C(0,2),∴M(3,1);(2)①∵四边形OABC是矩形,A(6,0)、C(0,2),∴B(6,2),设平移后的直线解析式为y=﹣x+k,把B(6,2)代入得2=﹣6+k,∴k=8,∴直线l经过点B时的函数关系式为y=﹣x+8,如图,令﹣x+8<0,则x>8,∴当x>8时,y<0;②如图1所示,当0≤x≤2时,y=•x•x=x2;如图2所示,当2<x≤6时,y=2+(x﹣2)×2=2x﹣2;如图3所示,当6<x≤8时,y=6×2﹣[2﹣(x﹣6)]2=12﹣(8﹣x)2=﹣x2+8x ﹣20;所以,y与x的函数关系式为:y=.。
28.5 表示一组数据分布的量一、单选题A.5B.6C.7D.8【答案】D【分析】用总人数减去其他三组的人数即为所求频数.【解析】解:20-3-5-4=8,故组界为99.5~124.5这一组的频数为8,故选:D.【点睛】本题考查频数分布直方图,能够根据要求读出相应的数据是解决本题的关键.7.已知一组数据:6,7,8,8,8,9,9,9,10,10,10,10,10,11,11,11,12,12,12,13,若以2为组距,则可以分成()A.6组B.5组C.4组D.3组【答案】C【分析】求出数据中做最大值和最小值的差,然后除以组距,小数部分要进一位即为组数.【解析】解:在这组数据中最大值为13,最小值为6,它们的差为:13-6=7,∵组距为2,∴组数=7÷2=3.5,所以可以分成4组,故选:C.【点睛】本题主要考查频数分布直方图,熟知频数分布直方图的画法,分组方法是解题的关键.8.将100个数据分成①-⑧组,如下表所示:A.35kg B.170kg【答案】C【分析】用总质量乘以质量不小于20g【解析】解:估计500kg草莓中“大果”故选:C.【点睛】本题主要考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,二、填空题【答案】0.2【分析】根据频数分布直方图可知组距为10可求解.【解析】设60~70的频率/组距为:x ,由题意得(100.0050.0100.0300.035x ´++++解得:0.02x =,三、解答题19.对一批成品衬衣进行抽检,获得如下频率、频数分布表:【答案】(1)40名;(2)约有104名;【分析】(1)利用五组频率之和为1,求出最后一组的频率,从而求出共抽取的学生数;(2)根据成绩超过80分的组频率之和,乘以(3)利用加权平均数求出即可.【解析】解:(1)最后一组的频率为请根据所给信息,解答下列问题:(1)a= ,b= ;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)的为少人?(3)一共有200个数据,按照从小到大的顺序排列后,第所以这次比赛成绩的中位数会落在80£故答案为:8090£<x´=(人).(4)30000.401200即该校参加这次比赛的3000名学生中成绩【点睛】本题考查频数(率)分布直方图,解题的关键是利用统计图获取信息,掌握用样本估计总体的方(1)此次调查的总体是__________,样本容量是__________.(2)若从9年级某学习加强班进行抽样调查,则这样的调查________(“合适”,“不合适”),原因是样本不是________样本;(3)根据图表1,估计该校对篮球感兴趣的学生的总人数为_____;(4)根据图表2,若从左至右依次是第一、二、三、四、五组,则中位数落在第___组.(5)若要从对篮球感兴趣的同学中选拔出一支篮球队来,现在有以下两名学生的投篮数据,记录的是每10次投篮命中的个数.甲同学:10、5、7、9、4;乙同学:7、8、7、6、7.若想要选择更稳定的同学,你会选择计算这两组数据的________,因为这个量可以代表数据的________.请计算出你所填写的统计量,并且根据计算的结果,选择合适的队员.【答案】(1)某区3200名学生放学后在校体育运动的情况,40(2)不合适;随机抽样(3)240(4)三(5)方差;离散程度;选择乙【分析】(1)根据总体及样本容量的相关概念可直接进行求解;(2)由题意可直接求解;(3)由图表1及题意可直接进行求解;(4)由题意知一共抽取40名学生进行调查,则将数据从小到大排列,第20,21和的平均数即为中位数,进而根据图表2可求解;(5)根据题意可求出方差,然后问题可求解.【解析】(1)解:总体是指要调查对象的全体,所以此次调查的总体是某区3200名学生放学后在校体育运(1)根据以上图表,回答下列问题:(1)请你根据上述频率分布直方图及表格完成下面的填空:这个地区11月份空气为轻度污染的天数是________.(2)为了进一步改善生活环境和空气质量,提高人民的生活质量,当地政府计划从积.已知2022年底该地区的绿化面积为化面积增加了50%,假设这两年绿化面积的年增长率相同,求这两年中绿化面积每年的增长率(精确到0.01)(参考数据:2 1.414»,3»【答案】(1)3,12,9,0.4,0.3(2)0.22正正。
浙教版七下第六章数据与统计图表解答题精选题号一总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分解答题(共40小题)1.现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物,为创建大数据应用示范城市,九江市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数是多少?(2)关注城市医疗信息的有多少人?并补全条形统计图;(3)扇形统计图中,D部分的圆心角的度数是多少?2.小林所在的班级开展了分组学习竞赛活动,每次竞赛后获得前两名的小组都要颁发优胜奖状.一段时间后,老师让小林用所学的数据收集与整理知识把各组获得奖状的次数整理如下.有一些项目还没有统计完,请用现有数据帮助小林完成下面任务.组第一小组第二小组第三小组第四小组第五小组次数432(1)请将表格补充完整;(2)请将条形统计图补充完整;(3)扇形统计图中,求表示第四小组扇形的圆心角度数.3.11月21日,“中国流动科技馆”榆林市第二轮巡展启动仪式在榆阳区青少年校外活动中心盛大举行,此次巡展以“体验科学”为主题.榆林市某中学举行了“科普知识”竞赛,为了解此次“科普知识”竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示.请根据图表信息解答以下问题.组别成绩x/分频数A组60≤x<706B组70≤x<80aC组80≤x<9012D组90≤x<10014(1)表中a=;一共抽取了个参赛学生的成绩;(2)补全频数分布直方图;(3)计算扇形统计图中“B”与“C”对应的圆心角度数;(4)若成绩在80分以上(包括80分)的为“优”等,所抽取学生成绩为“优”的占所抽取学生的百分比是多少?4.为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:(1)这次接受调查的市民总人数是;(2)扇形统计图中,“电视”所对应的圆心角的度数是;(3)请补全条形统计图.5.为了解“阳光体育”活动情况,我市教育部门在某所初中随机抽取了若干学生进行问卷调査,要求每位学生只能填写一种自己喜欢的活动,并将调査的结果绘制成如图的两个不完整的统计图:根据以上信息解答下列问题:(1)参加调查的人数共有人;在扇形图中,表示“C”的扇形的圆心角为度;(2)补全条形统计图,并计算扇形统计图中的m;6.手机给学生带来方便的同时也带来了很大的影响.常德市某校初一年级在一次家长会上对若干家长进行了一次对“学生使用手机”现象看法的调查,将调查数据整理得如下统计图(A:绝对弊大于利,B:绝对利大于弊,C:相对弊大于利,D:相对利大于弊):(1)这次调查的家长总人数为多少人?表示“C相对弊大于利”的家长人数为多少人?(2)本次调查的家长中表示“B绝对利大于弊”所占的百分比是多少?并补全条形统计图.(3)求扇形统计图图2中表示“A:绝对弊大于利”的扇形的圆心角度数.7.“绿色飞检”中对一所初中的九年级学生在试卷讲评课上参与学习的深度与广度进行调查,调查项目分为主动质疑、独立思考、专注听讲、讲解题目四项.调查组随机抽取了若干名九年级学生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)请将条形图补充完整;(3)如果全市有5200名九年级学生,那么在试卷评讲课中,“独立思考”的九年级学生有多少人8.实验中学学生会倡议同学们将用不着的课外书籍捐赠给希望小学.学生会对全校的捐赠情况进行调查和分组统计后,将数据整理成如图所示统计图(图中信息不完整).已知A组和B组的人数比为1:5.捐书人数分组统计表组别捐书数量x/本人数A1≤x<10aB10≤x<20100C20≤x<30D30≤x<40E x≥40请结合以上信息解答下列问题:(1)a=,本次参加捐书的总人数是;(2)先求出C组的人数,再补全“捐书人数分组统计图1”;(3)扇形统计图中,B组所对应的圆心角的度数是.9.在“书香宿松”读书活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,求“其他”类读物所在扇形的中心角是多少度?10.伴随着世界经济的飞速发展,信息化技术和互联网技术越来越多的影响着社会的各个方面“天元数学”是学生自主学习的网络平台,郑州某中学共有1800名学生,每人每周学习“天元数学”微课的数量都在5~17个(这里的5~17表示大于或等于5同时小于17),为进一步了解该校学生每周学习“天元数学”微课的情况,学校将收集来的全校学生学习“天元数学”微课的数量情况的数据整理后绘制成如下不完整的统计图,请你根据以上信息,解答下面问题(1)在图1中补全条形统计图;(2)计算:每周学习11~14个微课的学生人数对应的扇形圆心角的度数;(3)请根据条形统计图,在图2中制作相应的扇形统计图,并在图中分别标出各部分所占的百分比(精确到1%)11.2019年,我县将“排球垫球”作为中考体育必考项目之一.某校为了了解今年九年级学生排球垫球的水平,随机抽取部分九年级学生的测试成绩按A、B、C、D四个等级进行统计,制成了如图所示的两幅不完整的统计图.请你根据所给信息,解答下列问题:(1)求随机抽取的总人数;(2)求扇形统计图中D等级所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校九年级共有学生980人,请求出取得A等级的学生人数.12.小明为了解本市的空气质量情况,从市环保局随机抽取了若干天的空气质量情况作为标本进行统计,绘制成如图所示的条形统计图和扇形统计图.请你根据图中提供的信息,解答下列问题:(1)本次调查中共抽取了天的空气质量情况作为标本;(2)求轻微污染天数并补全条形统计图;(3)扇形统计图中表示轻微污染的圆心角度数是度;(4)请你估计该市这一年(365天)空气质量达到“优”和“良”的总天数.13.我市某中学为了了解孩子们对《中国诗词大会》、《挑战不可能》、《最强大脑》、《超级演说家》、《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(1)本次调查中共抽取了名学生.(2)补全条形统计图.(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是度.14.为积极创建全国文明城市,我市对某路口的行人交通违章情况进行了20天的调查,将所得的数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第13天,这一路口的行人交通违章次数是;这20天中,行人交通违章7次的有天.(2)这20天中,行人交通违章6次的有天;请把图2中的频数直方图补充完整.(3)请你根据图2绘制一个扇形统计图,并求行人违章9次的天数在扇形统计图中所对的圆心角度数.15.为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整.16.某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图(如图),请你结合图中的信息解答下列问题:(1)求被调查的学生人数;(2)补全条形统计图;(3)已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?17.武侯区为了丰富群众的文体生活,开展了“行随我动”跳绳比赛,该活动得到了学校的积极响应,某校为了了解七年级学生跳绳的训练情况,随机抽取了七年级部分学生进行60秒跳绳测试,并将这些学生的测试成绩(即60秒跳绳的个数,且这些测试成绩都是60~180范围内)分段后给出相应等级,具体为:测试成绩在60~90范围内的记为D级,90~120范围内的记为C级,120~150范围内的记为B级,150~180范围内的记为A级,现将数据整理绘制成如下两幅不完整的统计图,请根据图中的信息解答下列问题:(1)在扇形统计图中,A级所占百分比为;(2)在这次测试中,一共抽取了名学生,并补全频数分布直方图;(3)在(2)的基础上,在扇形统计图中,求D级对应的圆心角的度数.18.为了了解某市九年级学生的体育成绩(成绩均为整数),随机抽取了成绩在25分以上的部分考生,并将分数分段(A:37.5~40.5;B:34.5~37.5;C:31.5~34.5;D:28.5~31.5;E:25.5~28.5)统计,得到统计表和统计图如下:分数段A B C D E合计频数/人204064b20c频率0.1a0.320.280.11根据上面的信息,回答下列问题:(1)统计表中,a=,b=,c=;(2)将频数分布直方图补充完整;(3)若成绩在35分及以上定为优秀,该市15000名九年级学生参加体育考试,成绩为25分以上达90%,则成绩为优秀的学生人数约有多少?19.某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如图的两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生;(2)请将条形统计图补充完整;(3)分别求出安全意识为“淡薄”的学生占被调查学生总数的百分比、安全意识为“很强”的学生所在扇形的圆心角的度数.20.“十•一”黄金周期间,深圳世界之窗风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日5日6日7日人数变化单位:万人+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.2(1)请判断七天内游客人数最多的是日,最少的是日.(2)以9月30日的游客人数为0点,用折线统计图表示这7天的游客人数的变化情况.21.某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A,B,C,D四等级,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题(说明:测试成绩在总人数的前30%考生为A等级,前30%至前70%为B等级,前70%至前90%为C等级,90%以后为D等级)(1)抽取了名学生成绩;(2)请把频数分布直方图补充完整;(3)扇形统计图中A等级所在的扇形的圆心角度数是;(4)若测试成绩在总人数的前90%为合格,该校初二年级有800名学生,求全年级生物合格的学生共约多少人.22.某车间一周内计划每天生产100辆电动车,由于工人实行轮休,每天上班人数不一定相等,实际每天生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)星期一二三四五六日增减﹣5+5﹣5+5+10﹣10﹣15(1)本周三生产了多少辆电动车?(2)本周总产量与计划总生产量相比,是增加多少辆?还是减少多少辆?(3)产量最多的一天比产量最少的一天多生产了多少辆?(4)请你用折线图画出电动车产量的变化情况.23.为了了解某校学生对以下四个电视节目:A《最强大脑》、B《中国诗词大会》、C《朗读者》、D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:(1)本次调查的学生人数为;(2)在扇形统计图中,A部分所占圆心角的度数为;(3)请将条形统计图补充完整;(4)若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名.24.全球已经进入大数据时代,大数据(bigdata),是指数据规模巨大,类型多样且信息传播速度快的数据库体系.大数据在推动经济发展,改善公共服务等方面日益显示出巨大的价值.为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数是多少?(2)关注城市医疗信息的有多少人?并补全条形统计图:(3)扇形统计图中,D部分的圆心角的度数是多少?(4)写出两条你从统计图中获取的信息.25.“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)样本中的总人数为,开私家车的人数m=,扇形统计图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行、坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?26.某汽车经销商推出A,B,C,D四种型号的小轿车共1000辆进行展销,C型号轿车销售的成交率为50%,其他型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有多少辆?(2)请你将图2的统计图补充完整;(3)通过计十算说明,哪一种型号的轿车销售情况最好?27.为了增强学生的身体素质,某校坚持长年的全员体育锻炼,并定期进行体能测试,下面是将某班学生的立定跳远成绩(精确到0.01m),进行整理后,分成5组,画了的频率分布直方图的部分,已知:从左到右4个小组的频率分别是:0.05,0.15,0.30,0.35,第五小组的频数是9.(1)该班参加测试的人数是多少?(2)补全频率分布直方图.(3)若该成绩在2.00m(含2.00)的为合格,问该班成绩合格率是多少?28.为了考察某种大麦细长的分布情况,在一块试验田里抽取了部分麦穗.测得它们的长度,数据整理后的频数分布表及频数分直方图如下.根据以下信息,解答下列问题:穗长x频数4.0≤x<4.314.3≤x<4.614.6≤x<4.924.9≤x<5.255.2≤x<5.5115.5≤x<5.8155.8≤x<6.1286.1≤x<6.4136.4≤x<6.7116.7≤x<7.0107.0≤x<7.327.3≤x<7.61(Ⅰ)补全直方图;(Ⅱ)共抽取了麦穗棵;(Ⅲ)频数分布表的组距是,组数是;(Ⅳ)麦穗长度在5.8≤x<6.1范围内麦穗有多少棵?占抽取麦穗的百分之几?29.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查,被调查的每名学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动进行评价,图①和图②是该小组采集数据后绘制的两幅统计图,经检查发现扇形统计图是正确的,而条形统计图尚有一处错误且并不完整,请你根据统计图提供的信息,解答下列问题:(1)此次抽查的学生共有人(直接填空);(2)条形统计图中存在错误的是(填A、B、C中的一个),请在图②中将其改正,并直接在图②中补全条形统计图;(3)根据本次抽样调查,如果该校有800名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?30.新学期开学时,某校对八年级学生掌握“中学生日常行为规范”的情况进行了知识测试测试成绩全部合格(说明:成绩大于或等于60分合格),学校随机选取了部分学生的成绩,整理并绘制成以下不完整的图表:部分学生测试成绩统计表分数段频数频率60≤x<709a70≤x<80360.480≤x<9027b90≤x≤100C0.2请根据上述统计图表,解答下列问题:(1)表中a=,b=,c=;(2)补全频数分布直方图.31.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,回答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.32.某汽车交易市场为了解二手轿车的交易情况,将本市场去年成交的二手轿车的全部数据,以二手轿车交易前的使用时间为标准分为A、B、C、D、E五类,并根据这些数据由甲,乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)该汽车交易市场去年共交易二手轿车辆.(2)把这幅条形统计图补充完整.(画图后请标注相应的数据)(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为度.33.为了绿化环境,某班同学都积极参加植树活动,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:(1)该班共有多少名同学?(2)条形统计图中,求m和n的值;(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.34.某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表组别(kg)频数4.0~4.524.5~5.0a5.0~5.535.5~6.01(1)求a的值(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?35.“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了两幅统计图:(1)样本中的总人数为人;扇形统计十图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有1000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?36.某校为了开展读书活动,对学生喜爱的图书进行了一次分类调查,所有图书分成四类:艺术、文学、科普、其他,随即调查了该校m名学生(每名学生必选且只选一类图书),并将调查的结果制成如下两幅不完整的统计图根据统计图回答下列问题:(1)m=,n=.(2)扇形统计图中,艺术类所应的圆心角为度.(3)补全条形统计图.(4)请你统计该校600名学生中有多少名学生最喜欢科普图书.37.在结束了380课时初中阶段教学内容的教学后,唐老师计划再增加60课时用于总复习,将380课时按内容所占比例,绘制如下统计图表(图1~图2),请根据图表提供的信息,回答下列问题:(1)图1中“统计与概率”所在扇形的圆心角为度;(2)图2中的a=;(3)在60课时的总复习中,唐老师应安排多少课时复习“图形与几何”内容?38.“不忘初心,牢记使命.”全面建设小康社会到了攻坚克难阶段.为了解2017年全国居民收支数据,国家统计局组织实施了住户收支与生活状况调查,按季度发布.调查采用分层、多阶段、与人口规模大小成比例的概率抽样方法,在全国31个省(区、市)的1650个县(市、区)随机抽选16万个居民家庭作为调查户.已知2017年前三季度居民人均消费可支配收入平均数是2016年前三季度居民人均消费可支配收入平均数的115%,人均消费支出为11423元,根据下列两个统计图回答问题:(以下计算最终结果均保留整数)(1)求年度调查的样本容量及2017年前三季度居民人均消费可支配收入平均数(元);(2)求在2017年前三季度居民人均消费支出中用于医疗保健所占圆心角度数;(3)求在2017年前三季度居民人均消费支出中用于居住的金额.39.某厂签订48000辆自行车的组装合同,这些自行车分为L1、L2、L3三种型号,它们的数量比例及每天能组装各种型号自行车的数量如图所示:若每天组装同一型号自行车的数量相同,根据以上信息,完成下列问题:(1)从上述统计图可知,此厂需组装L1、L2、L3型自行车的辆数分别是,辆,辆,辆.(2)若组装每辆不同型号的自行车获得的利润分别是L1:40元/辆,L2:80元/辆,L3:60元/辆,且a=40,则这个厂每天可获利元.(3)若组装L1型自行车160辆与组装L3型自行车120辆花的时间相同,求a.40.四川省第十三届运动会将于2018年8月在我市举行,某校组织了主题“我是运动会志愿者”的电子小报作品征集活动,先从中随机抽取了部分作品,按A,B,C,D四个等级评分,然后根据统计结果绘制了如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)求此次抽取的作品中等级为B的作品数,并补全条形统计图;(2)求扇形统计图为D的扇形圆心角的度数;(3)该校计划从抽取的这些作品中选取部分作品参加市区的作品展.已知其中所选的到市区参展的A作品比B作品少4份,且A、B两类作品数量和正好是本次抽取的四个等级作品数量的,求选取到市区参展的B类作品有多少份.参考答案与试题解析解答题(共40小题)1.解:(1)本次参与调查的人数是200÷20%=1000(人);(2)关注城市医疗信息的有1000﹣(250+200+400)=150(人),补全条形统计图如下:(3)360°×=144°,答:扇形统计图中,D部分的圆心角的度数是144°.2.解:(1)补全表格如下:组第一小组第二小组第三小组第四小组第五小组次数45362(2)补全直方图如下:(3)表示第四小组扇形的圆心角度数为×360°=108°.3.解:(1)由题意:a=8,总人数=6+8+12+14=40(人),故答案为8,40.(2)直方图如图所示:(3)扇形统计图中“B”的圆心角=360°×=72°,“C”对应的圆心角度数=360°×=108°.(4)成绩在80分以上(包括80分)的为“优”等,所抽取学生成绩为“优”的占所抽取学生的百分比=×100%=65%.4.解:(1)这次接受调查的市民总人数是260÷26%=1000(人),故答案为:1000人;(2)扇形统计图中,“电视”所对应的圆心角的度数是360°×=54°,故答案为:54°;(3)通过报纸获取新闻的人数为1000×10%=100(人),补全图形如下:5.解:(1)参加调查的人数共有:69÷23%=300,在扇形图中,表示“C”的扇形的圆心角为:=108°,故答案为:300,108;(2)喜欢跳绳的人数为:300﹣60﹣69﹣36﹣45=90,补全的条形统计图如右图所示;扇形统计图中喜欢A的百分比为:×100%=20%,即扇形统计图中的m的值是20.6.解:(1)这次调查的家长总人数为40÷20%=200(人),表示“C相对弊大于利”的家长人数为40人;(2)B选项的人数为200﹣(90+40+50)=20(人),。
第二十章《数据的分析》提要:本章的重点是用样本估计总体,这是是统计中的一个基本思想,当所要考察的总体的个数很多或者考察本身带有破坏性时,我们常常通过对样本的研究分析来估计总体的情况。
这里涉及两个主要内容,即数据的集中量和差异量。
数据的集中量反映数据的集中趋势,而数据的差异量表示一组数据变异程度或离散程度的一类特征量。
本章的难点是对"加权平均数"、"权"、"方差"这3个概念的理解。
尤其是要注意它们的实际意义及计算方法。
习题:一、填空题1.数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4的比例确定。
已知小明的期考80分,作业90分,课堂参与85分,则他的总评成绩为________。
2.在一次测验中,某学习小组的5名学生的成绩如下(单位:分)68 、75、67、66、99。
这组成绩的平均分= ,中位数M= ;若去掉一个最高分后的平均分= ;那么所求的,M,这三个数据中,你认为能描述该小组学生这次测验成绩的一般水平的数据是。
3.从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm)都减去165.0cm,其结果如下:?1.2,0.1,?8.3,1.2,10.8,?7.0。
这6名男生中最高身高与最低身高的差是 __________ ;这6名男生的平均身高约为 ________ (结果保留到小数点后第一位)4.已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是。
5.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数统计结果如下表:班级参赛人数中位数方差平均字数甲55 149 191 135 乙55 151 110 135 某同学分析上表后得出如下结论:①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是 _________ (把你认为正确结论的序号都填上)。