28.5.1表示一组数据分布的量
- 格式:ppt
- 大小:1.03 MB
- 文档页数:13
《统计学》试题及答案(解答仅供参考)第一套一、名词解释1. 样本:在统计学中,样本是从总体中抽取的一部分个体,用于推断总体的特性。
2. 概率:概率是描述随机事件发生可能性的数值,范围在0到1之间。
3. 中位数:在一个数据集中,将所有数据按照大小排序后位于中间位置的数值称为中位数。
4. 方差:方差是描述一组数据分散程度的统计量,是各个数据与其平均数离差平方的平均数。
5. 相关系数:相关系数是衡量两个变量之间线性关系强度和方向的统计指标,其值介于-1和1之间。
二、填空题1. 在统计学中,______是描述数据集中趋势的常用指标,包括平均数、中位数和众数。
答案:集中趋势2. 如果一个随机变量的所有可能取值出现的概率相等,则该随机变量服从______分布。
答案:均匀分布3. 在进行假设检验时,我们通常会设定______水平,以决定拒绝原假设的标准。
答案:显著性水平(或称alpha水平)4. ______是通过观察样本来估计总体参数的一种方法。
答案:抽样5. 在回归分析中,______表示因变量的变化中能被自变量解释的比例。
答案:判定系数(R^2)三、单项选择题1. 下列哪种图表最适合展示各分类变量的频数分布?()A. 条形图B. 折线图C. 散点图D. 直方图答案:A2. 当两个随机变量完全正相关时,相关系数为()。
A. 0B. 1C. -1D. 无法确定答案:B3. 下列哪个统计量可用于度量数据的离散程度?()A. 平均数B. 中位数C. 众数D. 标准差答案:D4. 在t检验中,如果p值小于0.05,我们可以()。
A. 接受原假设B. 拒绝原假设C. 不能确定D. 都可以答案:B5. 在线性回归模型中,如果某个自变量的系数为负,那么这个自变量与因变量的关系是()。
A. 正相关B. 负相关C. 无关D. 不确定答案:B四、多项选择题1. 下列哪些是描述性统计分析的主要内容?()A. 平均数B. 中位数C. 众数D. 方差E. 相关系数答案:A、B、C、D、E2. 下列哪些是常用的概率分布?()A. 正态分布B. 均匀分布C. 泊松分布D. 二项分布E. 卡方分布答案:A、B、C、D、E3. 统计学中,总体与样本的关系是:A. 总体是全部数据,样本是部分数据B. 总体是随机抽取的部分数据,样本是全部数据C. 总体是固定不变的,样本是可以变动的D. 总体是随机的,样本也是随机的答案:A、C、D4. 下列哪种情况适合使用卡方检验?()A. 检验两个分类变量之间是否存在关联性B. 比较两组样本的平均值是否有显著差异C. 研究一个连续变量是否符合正态分布D. 预测一个响应变量的未来值E. 分析一个因素对实验结果的影响答案:A5. 在进行线性回归分析时,以下哪些假设通常需要满足?()A. 因变量和自变量之间存在线性关系B. 自变量之间不存在多重共线性C. 残差服从正态分布D. 同一样本中的观测值是独立的E. 样本数据必须是完整的,不能有缺失值答案:A、B、C、D五、判断题1. 标准差越大,数据的离散程度越大。
数理统计参考答案数理统计参考答案数理统计是一门研究数据收集、分析和解释的学科,它在各个领域都有广泛的应用。
无论是社会科学、自然科学还是工程技术,数理统计都扮演着重要的角色。
本文将为大家提供一份数理统计的参考答案,帮助读者更好地理解和应用这门学科。
一、描述统计描述统计是数理统计的基础,它通过对数据的整理、汇总和展示,帮助我们对数据的特征进行认识。
常见的描述统计方法包括中心趋势和离散程度的度量。
1. 中心趋势的度量中心趋势是描述数据集中分布情况的指标,常用的度量方法有均值、中位数和众数。
- 均值:均值是将数据集中所有观测值相加后除以观测值的总数得到的结果。
均值对异常值比较敏感,所以在分析数据时需要注意异常值的影响。
- 中位数:中位数是将数据集按照大小排序后处于中间位置的观测值。
中位数对异常值的影响较小,更能反映数据的集中趋势。
- 众数:众数是数据集中出现次数最多的观测值。
众数适用于描述分类数据和离散数据的中心趋势。
2. 离散程度的度量离散程度是描述数据分散程度的指标,常用的度量方法有范围、方差和标准差。
- 范围:范围是数据集中最大观测值与最小观测值之间的差异。
范围越大,数据的离散程度越大。
- 方差:方差是观测值与均值之间差异的平方和的平均值。
方差越大,数据的离散程度越大。
- 标准差:标准差是方差的平方根,它与均值具有相同的单位。
标准差可以帮助我们判断数据离散程度的大小。
二、概率论概率论是数理统计的理论基础,它研究随机现象的规律性和不确定性。
概率论包括基本概念、概率分布和随机变量等内容。
1. 基本概念- 随机试验:随机试验是在相同条件下重复进行的试验,其结果不确定。
- 样本空间:样本空间是随机试验所有可能结果的集合。
- 事件:事件是样本空间的子集,表示随机试验的某种结果。
2. 概率分布概率分布是描述随机变量取值可能性的函数,常见的概率分布有离散分布和连续分布。
- 离散分布:离散分布是指随机变量只能取有限个或可列个数值的概率分布,常见的离散分布有伯努利分布、二项分布和泊松分布。
2020-2021学年湖南省郴州市永兴县八年级(下)期末数学试卷一、选择题(共8小题,每小题3分)1.下列由a、b、c三边组成的三角形不是直角三角形的是()A.a=1、b=1、c=B.a=5、b=12、c=13C.a=6、b=8、c=9D.a=4、b=5、c=2.在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥3.下列四个图案中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.△ABC中,AB=6,BC=5,AC=7,点D、E、F分别是三边的中点,则△DEF的周长为()A.5B.9C.10D.185.关于点P(﹣3,4),下列说法正确的个数有()(1)点P到x轴的距离为4;(2)点P到y轴的距离为﹣3;(3)点P在第四象限;(4)点P到原点的距离为5;(5)点P关于x轴的对称点的坐标是(﹣3,﹣4).A.2个B.3个C.4个D.5个6.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元7.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s 与t之间的关系的大致图象是()A.B.C.D.8.在矩形ABCD中,一条直线将矩形任意分为两部分,设这两部分图形的内角和分别为x、y,则x+y的和是()A.360°、540°、720°B.360°、540°C.540°、720°D.360°、720°二、填空题(共8小题,满分24分,每小题3分)9.如图,在Rt△ABC中,∠ACB=90°,∠A=48°,点D是AB延长线上的一点,则∠CBD的度数是°.10.现将一组数据:21,25,23,25,27,29,25,30,28,29,26,24,27,25,26,22,24,25,26,28分成五组,其中26.5<x<28.5的频数是.11.已知一次函数y=kx+6的图象经过点A(2,﹣2),则k的值为.12.如图,若在象棋棋盘上建立平面直角坐标系,使“兵”位于点(1,0),“炮”位于点(﹣1,1),则“马”位于点.13.一个多边形的内角和是外角和的3倍,则这个多边形的边数是.14.矩形的一条对角线长为4,对角线的夹角其中一个为60°,该矩形的周长为.15.如图,两个边长为a的正方形重叠,其中一个的顶点在另一个的对角线的交点上,则重叠部分的面积为平方单位.16.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE ⊥AB于E,OF⊥AD于F.则OE+OF=.三、解答题(共10小题,17~19题每题6分,20~23每题8分,24~25每题10分,26题12分,满分82分)17.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,求证:BE=CF.18.如图,为了测算出学校旗杆的高度,小明将升旗的绳子拉到旗杆底端,并在与旗杆等长的地方打了一个记号,然后将绳子底端拉到离旗杆底端5米的地面处,发现此时绳子底端距离记号处1米,则旗杆的高度是多少米?19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣4,﹣1),B(﹣2,﹣4),C(﹣1,﹣2).(1)请画出△ABC向右平移5个单位后得到的△A1B1C1;(2)请画出△ABC关于x轴对称的△A2B2C2;(3)分别写出△A2B2C2三个顶点的坐标.20.某商店一种玩具定价为15元,商店为了促销于是打出广告:凡购买6个以上者则超过6个的部分一律打八折.(1)如果购买款用y(元)表示,购买数量用x(个)表示,求出y与x之间的函数关系式;(2)当x=4、x=8时,购买款分别是多少元?21.如图,在Rt△ABC中,∠BAC=90°,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、E,连接EC.求证:(1)四边形ABDE是平行四边形;(2)四边形ADCE是菱形.22.某班学生的期中成绩(成绩为整数)的频数分布表如下,请根据表中提供的信息回答下列问题:分组频数频率49.5<x<59.520.0459.5<x<69.56m69.5<x<79.5n0.4479.5<x<89.5150.389.5<x<99.55p合计q 1.0(1)m=,n=,p=,q=;(2)在表内,频率最小的一组的成绩范围是;(3)成绩优秀的学生有人(成绩大于或等于80分为优秀).(4)你认为该班学生的学习成绩怎么样?根据数据说明你的看法.23.周六王华骑电动车从家出发去张明家,当他骑了一段路时,想起要帮张明买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往张明家,如图是他离家的路程与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)王华家到张明家的路程是多少米?(2)王华在新华书店停留了多长时间?(3)买到书后,王华从新华书店到张明家骑车的平均速度是多少?(4)本次去张明家途中,王华一共行驶了多少米?24.如图所示,直线l1:y=﹣x﹣4与x轴交于点A,与y轴交于点B,将直线l1向上平移6个单位得到直线l2与y轴交于点C,已知直线l3:y=x+c经过点C且与直线l1交于点D,连接AC.(1)直接写出A、B、C三点的坐标;(2)求直线l3的解析式;(3)求△ACD的面积.25.如图,在△ABC中,∠BAC=90°,AB=AC,点D是直线BC上一动点(不与端点重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:CF⊥BC;(2)如图2,当点D在线段BC延长线上时,CF⊥BC还成立吗?如成立请证明,如不成立请说明理由;(3)在图1、图2中,选择一个图形证明:BD2+CD2=2AD2.26.如图,矩形OABC的顶点O在平面直角坐标系的原点,点A(6,0)、C(0,2)分别在坐标轴上,直线l的解析式为y=﹣x.(1)求矩形OABC对角线交点M的坐标;(2)直线l以每秒1个单位的速度向右平移,平移到经过顶点B停止.①求直线l经过点B时的函数关系式,作出它的图象,并指出当x取何值时,y<0;②设直线l在平移过程中扫过矩形OABC的面积为y,l平移的时间为x,求y与x的函数关系式.参考答案一、选择题(共8小题,满分24分,每小题3分)1.下列由a、b、c三边组成的三角形不是直角三角形的是()A.a=1、b=1、c=B.a=5、b=12、c=13C.a=6、b=8、c=9D.a=4、b=5、c=解:A、12+12=()2,符合勾股定理的逆定理,故本选项不符合题意;B、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;C、62+82≠92,不符合勾股定理的逆定理,故本选项符合题意;D、52+42=()2,符合勾股定理的逆定理,故本选项不符合题意.故选:C.2.在函数y=中,自变量x的取值范围是()A.x<B.x≤C.x>D.x≥解:在函数y=中,自变量x的取值范围是x≤,故选:B.3.下列四个图案中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.解:A、是中心对称图形,但不是轴对称图形.故本选项符合题意;B、是轴对称图形,不是中心对称图形.故本选项不合题意;C、是轴对称图形,不是中心对称图形.故本选项不合题意;D、是轴对称图形,不是中心对称图形.故本选项不合题意.故选:A.4.△ABC中,AB=6,BC=5,AC=7,点D、E、F分别是三边的中点,则△DEF的周长为()A.5B.9C.10D.18解:∵点D,E分别AB、BC的中点,AC=7,∴DE=AC=3.5,同理,DF=BC=2.5,EF=AB=3,∴△DEF的周长=DE+EF+DF=9,故选:B.5.关于点P(﹣3,4),下列说法正确的个数有()(1)点P到x轴的距离为4;(2)点P到y轴的距离为﹣3;(3)点P在第四象限;(4)点P到原点的距离为5;(5)点P关于x轴的对称点的坐标是(﹣3,﹣4).A.2个B.3个C.4个D.5个解:如图所示:(1)点P到x轴的距离为4,故(1)正确;(2)点P到y轴的距离为3,故(2)错误;(3)点P在第二象限,故(3)错误;(4)点P到x轴的距离为4,点P到y轴的距离为3,根据勾股定理可得,点P到原点的距离为5,故(4)正确;(5)点P关于x轴的对称点的坐标是(﹣3,﹣4),故(5)正确.所以正确的个数有3个.故选:B.6.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元解:根据图形所给出的数据可得:捐款额为15~20元的有20人,人数最多,则捐款人数最多的一组是15﹣20元.故选:C.7.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s 与t之间的关系的大致图象是()A.B.C.D.解:由题意,随着抽水时间的增加,剩下的水量逐渐减少;停止时剩下的水量不变,两台抽水机同时工作抽水速度增大,剩下的水量迅速减少,可得答案.故选:D.8.在矩形ABCD中,一条直线将矩形任意分为两部分,设这两部分图形的内角和分别为x、y,则x+y的和是()A.360°、540°、720°B.360°、540°C.540°、720°D.360°、720°解:分三种情况:①一条直线将矩形分为两个三角形,如图1所示:则x+y=180°+180°=360°;②一条直线将矩形分为一个三角形和一个四边形,如图2所示:则x+y=180°+360°=540°;③一条直线将矩形分为两个四边形,如图3所示:则x+y=360°+360°=720°;综上所述,x+y的和是360°或540°或720°,故选:A.二、填空题(共8小题,满分24分,每小题3分)9.如图,在Rt△ABC中,∠ACB=90°,∠A=48°,点D是AB延长线上的一点,则∠CBD的度数是138°.解:∵∠ACB=90°,∠A=48°,∴∠CBD=∠ACB+∠A=90°+48°=138°,故答案为138.10.现将一组数据:21,25,23,25,27,29,25,30,28,29,26,24,27,25,26,22,24,25,26,28分成五组,其中26.5<x<28.5的频数是4.解:这组数据中26.5<x<28.5的数据,即是数据27、28出现的次数,通过统计数据27、28共出现4次,故答案为:4.11.已知一次函数y=kx+6的图象经过点A(2,﹣2),则k的值为﹣4.解:把点A(2,﹣2)代入y=kx+6,得﹣2=2k+6,解得k=﹣4.故答案为:﹣4.12.如图,若在象棋棋盘上建立平面直角坐标系,使“兵”位于点(1,0),“炮”位于点(﹣1,1),则“马”位于点(4,﹣2).解:建立平面直角坐标系如图所示,“马”位于点(4,﹣2).故答案为:(4,﹣2).13.一个多边形的内角和是外角和的3倍,则这个多边形的边数是八.解:设多边形的边数是n,根据题意得,(n﹣2)•180°=3×360°,解得n=8,∴这个多边形为八边形.故答案为:八.14.矩形的一条对角线长为4,对角线的夹角其中一个为60°,该矩形的周长为4+4.解:如图,∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠ABC=90°,AC=BD=4,AO=OC=AC=2,OB=OD=2,∴AO=OB=2,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=2=CD,在Rt△ABC中,由勾股定理得:BC===2,∴矩形ABCD的周长=2(AB+BC)=4+4,故答案为:4+4.15.如图,两个边长为a的正方形重叠,其中一个的顶点在另一个的对角线的交点上,则重叠部分的面积为平方单位.解:如图,∵四边形ABCD是正方形,∴BO=CO=DO,∠BDC=∠BCO=45°,AC⊥BD,∴∠DOC=∠EOF=90°,∴∠DOE=∠COF,在△COF和△DOE中,,∴△COF≌△DOE(ASA),∴S△COF=S△DOE,∴四边形OECF的面积=S△OCD=S正方形ABCD=a2,∴重叠部分的面积为a2,故答案为a2.16.如图,在边长为10的菱形ABCD中,对角线BD=16,点O是线段BD上的动点,OE ⊥AB于E,OF⊥AD于F.则OE+OF=9.6.解:如图,连接AC交BD于点G,连接AO,∵四边形ABCD是菱形,∴AC⊥BD,AB=AD=10,BG=BD=8,根据勾股定理得:AG===6,∵S△ABD=S△AOB+S△AOD,即BD•AG=AB•OE+AD•OF,∴16×6=10OE+10OF,∴OE+OF=9.6.故答案为:9.6.三、解答题(共10小题,17~19题每题6分,20~23每题8分,24~25每题10分,26题12分,满分82分)17.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,求证:BE=CF.【解答】证明:∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F.∴DE=DF,∠DEB=∠DFC=90°,∵AB=AC,AD平分∠BAC,∴AD是BC边上的中线,∴BD=CD,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴BE=CF.18.如图,为了测算出学校旗杆的高度,小明将升旗的绳子拉到旗杆底端,并在与旗杆等长的地方打了一个记号,然后将绳子底端拉到离旗杆底端5米的地面处,发现此时绳子底端距离记号处1米,则旗杆的高度是多少米?解:如图,设旗杆的高度为xm,则AC=x m,AB=(x+1)m,BC=5 m,在Rt△ABC中,52+x2=(x+1)2,解得x=12,答:旗杆的高度是12 m.19.如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣4,﹣1),B(﹣2,﹣4),C(﹣1,﹣2).(1)请画出△ABC向右平移5个单位后得到的△A1B1C1;(2)请画出△ABC关于x轴对称的△A2B2C2;(3)分别写出△A2B2C2三个顶点的坐标.解:(1)如图,△A1B1C1即为所求.(2)如图,△A2B2C2即为所求.(3)A2(﹣4,1),B2(﹣2,4),C2(﹣1,2).20.某商店一种玩具定价为15元,商店为了促销于是打出广告:凡购买6个以上者则超过6个的部分一律打八折.(1)如果购买款用y(元)表示,购买数量用x(个)表示,求出y与x之间的函数关系式;(2)当x=4、x=8时,购买款分别是多少元?解:(1)由题意可得,当0<x≤6时,y=15x,当x>6时,y=15×6+(x﹣6)×15×0.8=12x+18,由上可得,y与x的函数关系式为y=;(2)当x=4时,y=15×4=60,当x=8时,y=12×8+18=114,答:当x=4,x=8时,货款分别为60元,114元.21.如图,在Rt△ABC中,∠BAC=90°,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、E,连接EC.求证:(1)四边形ABDE是平行四边形;(2)四边形ADCE是菱形.【解答】证明:(1)∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形;(2)由(1)得:AE=BD,∵AD是边BC上的中线,∴BD=CD,∴AE=CD,∴四边形ADCE是平行四边形,又∵∠BAC=90°,AD是边BC上的中线,∴AD=BC=CD,∴平行四边形ADCE是菱形.22.某班学生的期中成绩(成绩为整数)的频数分布表如下,请根据表中提供的信息回答下列问题:分组频数频率49.5<x<59.520.0459.5<x<69.56m69.5<x<79.5n0.4479.5<x<89.5150.389.5<x<99.55p合计q 1.0(1)m=0.12,n=22,p=0.1,q=50;(2)在表内,频率最小的一组的成绩范围是49.5<x<59.5;(3)成绩优秀的学生有20人(成绩大于或等于80分为优秀).(4)你认为该班学生的学习成绩怎么样?根据数据说明你的看法.解:(1)∵q=2÷0.04=50,∴m=6÷50=0.12,n=50×0.44=22,p=5÷50=0.1,故答案为:0.12、22、0.1、50;(2)在表内,频率最小的一组的成绩范围是49.5<x<59.5,故答案为:49.5<x<59.5;(3)成绩优秀的学生人数为15+5=20(人),故答案为:20;(4)成绩很好,理由:优秀人数多,有20人(答案不唯一).23.周六王华骑电动车从家出发去张明家,当他骑了一段路时,想起要帮张明买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往张明家,如图是他离家的路程与时间的关系示意图,请根据图中提供的信息回答下列问题:(1)王华家到张明家的路程是多少米?(2)王华在新华书店停留了多长时间?(3)买到书后,王华从新华书店到张明家骑车的平均速度是多少?(4)本次去张明家途中,王华一共行驶了多少米?解:(1)根据函数图象,可知王华家到张明家的路程是4800米;(2)24﹣16=8(分钟).所以王华在新华书店停留了8分钟;(3)王华从新华书店到张明家的路程为4800﹣3000=1800米,所用时间为28﹣24=4分钟,小王华从新华书店到张明家骑车的平均速度是:1800÷4=450(米/分);(4)根据函数图象,王华一共行驶了4800+2×(4000﹣3000)=6800(米).24.如图所示,直线l1:y=﹣x﹣4与x轴交于点A,与y轴交于点B,将直线l1向上平移6个单位得到直线l2与y轴交于点C,已知直线l3:y=x+c经过点C且与直线l1交于点D,连接AC.(1)直接写出A、B、C三点的坐标;(2)求直线l3的解析式;(3)求△ACD的面积.解:(1)在y=﹣x﹣4中,令y=0,则0=﹣x﹣4,解得x=﹣3,∴A(﹣3,0),令x=0,则y=﹣4,∴B(0,﹣4),将直线l1向上平移6个单位长度,得直线l2:y=﹣x+2,令x=0,则y=2,∴C(0,2);(2)∵点C在直线l3:y=x+c上,∴c=2,∴直线l3的解析式为y=x+2;(3)解得,∴D(﹣,﹣2),∵BC=OB+OC=6,∴S△ACD=S△ABC﹣S△BCD=﹣=.25.如图,在△ABC中,∠BAC=90°,AB=AC,点D是直线BC上一动点(不与端点重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,求证:CF⊥BC;(2)如图2,当点D在线段BC延长线上时,CF⊥BC还成立吗?如成立请证明,如不成立请说明理由;(3)在图1、图2中,选择一个图形证明:BD2+CD2=2AD2.【解答】(1)证明:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=90°,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF,在△ABD和△ACF中,,∴∠B=∠ACB=45°,∴△ABD≌△ACF(SAS),∴∠B=∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90°,∴CF⊥BC;(2)解:CF⊥BC还成立,证明如下:同(1)得:△ABD≌△ACF(SAS),∴∠B=∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90°,∴CF⊥BC;(3)证明:图1中,连接DF,由(1)可知,BD=CF,∠BCF=90°,∴CF2+CD2=DF2,∴BD2+CD2=DF2,∵∠DAF=90°,AD=AF,∴AD2+AF2=DF2,∴2AD2=DF2,∴BD2+CD2=2AD2;图2中,连接DF,由(2)得:BD=CF,CF⊥BC,∴∠DCF=90°,∴CF2+CD2=DF2,∴BD2+CD2=DF2,∵∠DAF=90°,AD=AF,∴AD2+AF2=DF2,∴2AD2=DF2,∴BD2+CD2=2AD2.26.如图,矩形OABC的顶点O在平面直角坐标系的原点,点A(6,0)、C(0,2)分别在坐标轴上,直线l的解析式为y=﹣x.(1)求矩形OABC对角线交点M的坐标;(2)直线l以每秒1个单位的速度向右平移,平移到经过顶点B停止.①求直线l经过点B时的函数关系式,作出它的图象,并指出当x取何值时,y<0;②设直线l在平移过程中扫过矩形OABC的面积为y,l平移的时间为x,求y与x的函数关系式.解:(1)四边形OABC是矩形,∴对角线交点M是AC的中点,∵点A(6,0)、C(0,2),∴M(3,1);(2)①∵四边形OABC是矩形,A(6,0)、C(0,2),∴B(6,2),设平移后的直线解析式为y=﹣x+k,把B(6,2)代入得2=﹣6+k,∴k=8,∴直线l经过点B时的函数关系式为y=﹣x+8,如图,令﹣x+8<0,则x>8,∴当x>8时,y<0;②如图1所示,当0≤x≤2时,y=•x•x=x2;如图2所示,当2<x≤6时,y=2+(x﹣2)×2=2x﹣2;如图3所示,当6<x≤8时,y=6×2﹣[2﹣(x﹣6)]2=12﹣(8﹣x)2=﹣x2+8x ﹣20;所以,y与x的函数关系式为:y=.。
28.5 表示一组数据分布的量一、单选题A.5B.6C.7D.8【答案】D【分析】用总人数减去其他三组的人数即为所求频数.【解析】解:20-3-5-4=8,故组界为99.5~124.5这一组的频数为8,故选:D.【点睛】本题考查频数分布直方图,能够根据要求读出相应的数据是解决本题的关键.7.已知一组数据:6,7,8,8,8,9,9,9,10,10,10,10,10,11,11,11,12,12,12,13,若以2为组距,则可以分成()A.6组B.5组C.4组D.3组【答案】C【分析】求出数据中做最大值和最小值的差,然后除以组距,小数部分要进一位即为组数.【解析】解:在这组数据中最大值为13,最小值为6,它们的差为:13-6=7,∵组距为2,∴组数=7÷2=3.5,所以可以分成4组,故选:C.【点睛】本题主要考查频数分布直方图,熟知频数分布直方图的画法,分组方法是解题的关键.8.将100个数据分成①-⑧组,如下表所示:A.35kg B.170kg【答案】C【分析】用总质量乘以质量不小于20g【解析】解:估计500kg草莓中“大果”故选:C.【点睛】本题主要考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,二、填空题【答案】0.2【分析】根据频数分布直方图可知组距为10可求解.【解析】设60~70的频率/组距为:x ,由题意得(100.0050.0100.0300.035x ´++++解得:0.02x =,三、解答题19.对一批成品衬衣进行抽检,获得如下频率、频数分布表:【答案】(1)40名;(2)约有104名;【分析】(1)利用五组频率之和为1,求出最后一组的频率,从而求出共抽取的学生数;(2)根据成绩超过80分的组频率之和,乘以(3)利用加权平均数求出即可.【解析】解:(1)最后一组的频率为请根据所给信息,解答下列问题:(1)a= ,b= ;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在 分数段;(4)若成绩在90分以上(包括90分)的为少人?(3)一共有200个数据,按照从小到大的顺序排列后,第所以这次比赛成绩的中位数会落在80£故答案为:8090£<x´=(人).(4)30000.401200即该校参加这次比赛的3000名学生中成绩【点睛】本题考查频数(率)分布直方图,解题的关键是利用统计图获取信息,掌握用样本估计总体的方(1)此次调查的总体是__________,样本容量是__________.(2)若从9年级某学习加强班进行抽样调查,则这样的调查________(“合适”,“不合适”),原因是样本不是________样本;(3)根据图表1,估计该校对篮球感兴趣的学生的总人数为_____;(4)根据图表2,若从左至右依次是第一、二、三、四、五组,则中位数落在第___组.(5)若要从对篮球感兴趣的同学中选拔出一支篮球队来,现在有以下两名学生的投篮数据,记录的是每10次投篮命中的个数.甲同学:10、5、7、9、4;乙同学:7、8、7、6、7.若想要选择更稳定的同学,你会选择计算这两组数据的________,因为这个量可以代表数据的________.请计算出你所填写的统计量,并且根据计算的结果,选择合适的队员.【答案】(1)某区3200名学生放学后在校体育运动的情况,40(2)不合适;随机抽样(3)240(4)三(5)方差;离散程度;选择乙【分析】(1)根据总体及样本容量的相关概念可直接进行求解;(2)由题意可直接求解;(3)由图表1及题意可直接进行求解;(4)由题意知一共抽取40名学生进行调查,则将数据从小到大排列,第20,21和的平均数即为中位数,进而根据图表2可求解;(5)根据题意可求出方差,然后问题可求解.【解析】(1)解:总体是指要调查对象的全体,所以此次调查的总体是某区3200名学生放学后在校体育运(1)根据以上图表,回答下列问题:(1)请你根据上述频率分布直方图及表格完成下面的填空:这个地区11月份空气为轻度污染的天数是________.(2)为了进一步改善生活环境和空气质量,提高人民的生活质量,当地政府计划从积.已知2022年底该地区的绿化面积为化面积增加了50%,假设这两年绿化面积的年增长率相同,求这两年中绿化面积每年的增长率(精确到0.01)(参考数据:2 1.414»,3»【答案】(1)3,12,9,0.4,0.3(2)0.22正正。
28.5(1)表示一组数据分布的量教学目标设计理解频数的概念,对于一组数据,在给定的分组情况下能制作频数分布表,会绘制频数分布直方图,能从频数分布直方图中获取有关信息以及判断数据的分布情况。
通过学生自主对数据进行整理,让学生了解数据的处理方式可以多种多样,但为了统一,我们规定一种特定的方式。
教学重点及难点重点:绘制频数分布直方图的方法.难点:确定频数分布直方图的组距与组数.1)如果给出的数据如上,你能否根据以前的知识对这批数据进行整理2)为什么不能处理2)给出教师对数据的整理方式通过教师对数据的处理回答问题 1)14的含义?2)从图中可否看出80-90分数段中每一个学生的具体分数。
明确这节课的学习目标:对于较复杂的数据进行整理和分组,并用如上的频数分布直方图表示出来。
回到前面的问题复习频数的概念,并在图中指出同意票价为160元的频数。
部分学生想到了利用分数段来对数据进行整理。
学生回答 要这样细致。
对于想到分数段来解决该问题的学生给予肯定复习曾在概率初步中出现过的“频数”概念,同时让学生直观地认识“分布”的含义,抛砖引玉.983073295080人数价格(元) 160 180 200 价格(元 )人数(人)8090100成绩(分)21014591)在这幅图中,频数体现在哪里? 2)从几何的角度思考,频数表示什么? 3)对于这组数据,一共分了几组,每一组的跨度多少? 再给出一组数据 1)数据的整理 某校八年级2班30名男生的身高情况测量如下(单位:cm ): 164 169 170 182 180 169 176 166 162 174 183 170 171 170 173 174 162 174 173 165 167 160 158 175 162 177 173 156 174 175 学生进行整理 提问,若对这组数据我们想分六组怎么分? 例题:某中学为了了解本校九年级学生用于阅读课外书籍的时间的情况,对九年级随机抽取了40名学生,对他们每周阅读课外书籍所用时间进行统计,调查结果如下(时间单位:小时) 学生思考并回答整理的方式很多,对于学生好的分组方法给与肯定 学生思考并回答在此通过问题,引出频数分布的组距和组数的概念 教师在学生进行自行分组时要注意:1) 起始组小于等于最小值,最后一组包含最大值 2) 问学生先确定组距还是组数 分组的方法很多,这里有必要统一一种分组方法。
《误差理论与数据处理》部分课后作业参考答案1-18根据数据运算规则,分别计算下式结果:(1)3151.0+65.8+7.326+0.4162+152.28=?(2)28.13X0.037X1.473=?【解】(1)原式≈3151.0+65.8+7.33+0.42+152.28=3376.83≈3376.8(2) 原式≈28.1X0.037X1.47=1.528359≈1.52-12某时某地由气压表得到的读数(单位为Pa)为102523.85,102391.30,102257.97,102124.65,101991.33,101858.01,101726.69,101591.36,其权各为1,3,5,7,8,6,4,2,试求加权算术平均值及其标准差。
【解】(1)加权算术平均值:∑∑==-+=miimiiipxxpxx11)(=100000+1×2523.85+3×2391.30+5×2257.97+7×2124.65+8×1991.33+∙∙∙1+3+5+7+8+6+4+2=102028.3425Pa(2)标准差:∑∑==-=miimixixpmvpi112)1(σ=√1×(102523.85−102028.3425)+3×(102391.30−102028.3425)+∙∙∙(1+3+5+7+8+6+4+2)∗(8−1)=86.95Pa2-17对某量进行10次测量,测得数据为14.7,1.0,15.2,14.8,15.5,14.6,14.9,14.8,15.1,15.0,试判断该测量列中是否存在系统误差。
【解】对数据进行列表分析,如下:作出残差与次数的关系图:(1) 线性系统误差:根据关系图利用残余误差观察法可知,不存在线性系统误差。
根据不同公式计算标准差比较法可得:按贝塞尔公式:2633.01121=-=∑=n vni iσ按别捷尔斯公式:2642.0)1(253.112=-=∑=n n vni iσ|u |=|σ2σ1−1|=|0.26420.2633−1|=0.0032<2√n −1=23故不存在线性系统误差。
三爱群林山杰团队-20xx福建近三年一检试卷分类汇编系列专题5统计与概率-林平生老师整理-含答案版-20xx-2-26解题学习整理汇编资料系列20xx福建近三年一检试题分类汇编—专题5—统计与概率微专题一:调查方式的考查1.(20xx厦门质检)某初中校学生会为了解20xx年本校学生人均课外阅读量,计划开展抽样调查.下列抽样调查方案中最合适的是( )A.到学校图书馆调查学生借阅量B.对全校学生暑假课外阅读量进行调查C.对初三年学生的课外阅读量进行调查D.在三个年级的学生中分别随机抽取一半学生进行课外阅读量的调查答案:D2.(20xx南平质检)下列说法正确的是( ).A.为了审核书稿中的错别字,选择抽样调查B.为了了解某电视剧的收视率,选择全面调查C.“射击运动员射一次,命中靶心”是随机事件D.“经过有交通信号灯的路口,遇到红灯”是必然事件答案:C3.(20xx南平质检)下列调查中,适宜采用普查方式的是()A.对一批LED节能灯使用寿命的调查 B.对冷饮市场上冰淇淋质量情况的调查C.对一个社区每天丢弃塑料袋数量的调查 D.对大型民用直升机各零部件的检查答案:D微专题二:统计量的考查1.(20xx?江阴一检)已知一组数据:3,3,4,5,5,6,6,6. 这组数据的众数是______.答案:62.(20xx?无锡一检)若一组数据1,2,x,4的众数是1,则这组数据的方差为______.答案:1.53.(20xx?徐州一检)某同学一周中每天体育运动时间(单位:分钟)分别为:35、40、45、40、55、40、48.这组数据的众数、中位数是()A.55、40 B.40、42.5 C.40、40 D.40、45答案:C4.(20xx?淮安一检)某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是() A.18分,17分B.20分,17分C.20分,19分D.20分,20分答案:D5.(20xx?淮安一检)如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.1答案:A6.(20xx?厦门一检)图2,图3分别是某厂六台机床十月份第一天和第二天生产零件数的统计图.与第一天相比,第二天六台机床生产零件数的平均数与方差的变化情况是()A.平均数变大,方差不变B.平均数变小,方差不变C.平均数不变,方差变小D.平均数不变,方差变大图2学生数图2学生数正确速拧个数答案:D7.(20xx?厦门一检)某区25位学生参加魔方速拧比赛,比赛成绩如图2所示,则这25个成绩的中位数是()A.11 B.10.5 C.10 D.6答案:A8.(20xx?苏州一检)在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米)4.504.604.654.704.754.80人数232341则这些运动员成绩的中位数、众数分别是()A.4.65、4.70 B.4.65、4.75 C.4.70、4.75 D.4.70、4.70 答案:C9. (20xx?南京一模)某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5 B.4.5,6 C.5,6 D.5.5,6答案:D10.(20xx?南京一模)抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差答案:A11.(20xx?厦门一检)甲、乙两人参加某商场的招聘测试,测试由语言和商品知识两个项目组成,他们各自的成绩(百分制)如下表所示.该商场根据成绩在两人之间录用了乙,则本次招聘测试中权重较大的是_______项目.应聘者语言商品知识甲7080乙8070答案:语言.12.(20xx?南京一模)甲乙两组各有10名学生,进行电脑汉字输入速度比赛,现将他们的成绩进行统计,过程如下:收集数据各组参赛学生每分钟输入汉字个数统计如表:输入汉字(个)132133134135136137甲组人数(人)11521乙组人数(人)14122分析数据两组数据的众数、中位数、平均数、方差如下表所示:组众数中位数平均数()方差(s2)甲组1351351351.6乙组134134.51351.8得出结论(1)若每分钟输入汉字个数136及以上为优秀,则从优秀人数的角度评价甲、乙两组哪个成绩更好一些?(2)请你根据所学的统计知识,从不同角度评价甲、乙两组学生的比赛成绩(至少从两个角度进行评价).答案:解:(1)∵每分钟输入汉字个数136及以上的甲组人数有3人,乙组有4人,∴乙组成绩更好一些;(2)从中位数看,甲班每分钟输入135字以上的人数比乙班多;从方差看,S2甲<S2乙;甲班成绩波动小,比较稳定;微专题三:统计图表的考查1.(20xx?扬大附中期中)甲进行了10次射击训练,平均成绩为9环,且前9次的成绩(单位:环)依次为:8,10,9,10,7,9,10,8,10.(1)求甲第10次的射击成绩;(2)求甲这10次射击成绩的方差;(3)乙在相同情况下也进行了10次射击训练,平均成绩为9环,方差为1.6环2,请问甲和乙哪个的射击成绩更稳定?答案:(1)根据题意,甲第10次的射击成绩为9×10﹣(8+10+9+10+7+9+10+8+10)=9;(2)甲这10次射击成绩的方差为×[4×(10﹣9)2+3×(9﹣9)2+2×(8﹣9)2+(7﹣9)2]=1;(3)∵平均成绩相等,而甲的方差小于乙的方差,∴乙的射击成绩更稳定.2.(20xx?泉州一检)在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据,提据以上数据,解答下列问题:次数12345678910黑棋数2515474336(1)直接填空:第10次摸棋子摸到黑棋子的频率为______;(2)试估算袋子中的白棋子数量。