当前位置:文档之家› 正弦函数、余弦函数的图形和性质经典练习题

正弦函数、余弦函数的图形和性质经典练习题

正弦函数、余弦函数的图形和性质经典练习题
正弦函数、余弦函数的图形和性质经典练习题

正弦函数、余弦函数的图形和性质

一、填空题

1.函数的周期是,当时,有最小值。

2.函数的定义域是。

3.函数的最小正周期是。

4.若函数(、为常数)的最大值为1、最小值为-7,则的最大值

为。

5.函数的单调递增区间是。

二、解答题

1.判断下列函数的奇偶性。

(1);

(2);

(3);

(4)。

2.求下列函数的定义域。

(1);(2);

(3);(4)。

3.已知函数

(1)求函数的最小正周期;

(2)求的最大值、最小值;

(3)求的单调递增区间。

4.水渠横断面为等腰梯形(如图),渠深为,梯形面积为S,为了使渠道的渗水量达到最小,应使梯形两腰及下底边长之和为最小,问此时腰与下底夹角应是多少?

5.已知,则当函数取最大值时,求自变量的集合。

【参考答案】

一、填空题

1.、()、;2.();3.;

4.15;5.().

二、解答题

1.(1)偶函数;(2)非奇非偶函数;(3)奇函数;(4)既是奇函数又是偶函数。

2.(1)();(2)()

(3);(4)

3.解:

(1)

(2)即,时,最大值2。

即,时,最小值-2。(3)

∴,时,单调递增。

4.解:设,梯形腰与底边的夹角为,

则,由梯形面积为定值S。

∴∴

又∵,设梯形两腰及下底和为,

只需求()的最小值。令

此时∴∴∴

5.解:

取是大值时,,

∴,

∴函数取最大值时,自变量的集合为

教案正弦型函数的图像和性质

教案 正弦型函数的图像和性质 1.,,A ω?的物理意义 当sin()y A x ω?=+,[0,)x ∈+∞(其中0A >,0ω>)表示一个振动量时,A 表示这个量振动时离开平衡位置的最大距离,通常称为这个振动的振幅,往复振动一次需要的时间2T π ω = 称为这个振动的周期,单位时间内往复振动的次数12f T ω π = = ,称为振动的频率。x ω?+称为相位,0x =时的相位?称为初相。 2.图象的变换 例 : 画出函数3sin(2)3 y x π =+的简图。 解:函数的周期为22 T π π= =,先画出它在长度为一个周期内的闭区间上的简图,再 函数3sin(2)3 y x π =+ 的图象可看作由下面的方法得到的: ①sin y x =图象上所有点向左平移 3 π 个单位,得到sin()3y x π=+的图象上;②再把 图象上所点的横坐标缩短到原来的12,得到sin(2)3 y x π =+的图象;③再把图象上所有点 的纵坐标伸长到原来的3倍,得到3sin(2)3 y x π =+的图象。 x y O π 3 π- 6 π- 53 π 2π sin(3 y x π =+ sin(2)3 y x π =+ sin y x = 3sin(23 y x π =+

一般地,函数sin()y A x ω?=+,x R ∈的图象(其中0A >,0ω>)的图象,可看作由下面的方法得到: ①把正弦曲线上所有点向左(当0?>时)或向右(当0?<时)平行移动||?个单位长度; ②再把所得各点横坐标缩短(当1ω>时)或伸长(当01ω<<时)到原来的 1 ω 倍(纵坐标不变); ③再把所得各点的纵坐标伸长(当1A >时)或缩短(当01A <<时)到原来的A 倍(横坐标不变)。 即先作相位变换,再作周期变换,再作振幅变换。 问题:以上步骤能否变换次序? ∵3sin(2)3sin 2()36y x x π π=+ =+,所以,函数3sin(2)3 y x π =+的图象还可看作 由下面的方法得到的: ①sin y x =图象上所点的横坐标缩短到原来的 1 2 ,得到函数sin 2y x =的图象; ②再把函数sin 2y x =图象上所有点向左平移6 π 个单位,得到函数sin 2()6y x π=+的 图象; ③再把函数sin2()6y x π =+的图象上所有点的纵坐标伸长到原来的3倍,得到3sin 2() 6 y x π=+的图象。 3.实际应用 例1:已知函数sin()y A x ω?=+(0A >,0ω>)一个周期内的函数图象,如下图 所示,求函数的一个解析式。 又∵0A > ,∴A = 由图知 52632 T πππ=-= ∴2T π πω ==,∴2ω=, 又∵157()23612 πππ+=, ∴图象上最高点为7( 12 π , ∴7)12π?=?+,即7sin()16π?+=,可取23 π?=-, 所以,函数的一个解析式为2)3 y x π =-. 2.由已知条件求解析式 例2: 已知函数cos()y A x ω?=+(0A >,0ω>,0?π<<) 的最小值是5-, 图x 3 3 π 56 π 3 O

正弦函数与余弦函数的性质练习题

专项训练:正弦函数与余弦函数的性质 一、单选题 1.已知函数f (x )=sin(2x+φ)在x=处取得最大值,则函数y=cos(2x+φ)的图象( ) A . 关于点对称 B . 关于点对称 C . 关于直线x=对称 D . 关于直线x=对称 2.将曲线y=sin 上所有点的横坐标缩短到原来的倍(纵坐标不变)得到曲线A ,再把A 上的所有点向右平行移动个单位长度得到曲线B ,则曲线B 的函数解析式为( ) A . y=sin 2x B . y=sin C . y=sin x D . y=sin 3.将函数f (x )=sin 2x 的图象向左平移个单位,再向上平移2个单位,得到g (x )的图象.若g (x 1)·g (x 2)=9,且x 1,x 2∈[-2π,2π],则|x 1-x 2|的最大值为( ) A . π B . 2π C . 3π D . 4π 4.函数的部分图象如图,则、可以取的一组值是( ) A . B . C . D . 5.已知函数 的最小正周期为,为了得到函数 .的图象,只要将的图象( ) A . 向左平移个单位长度 B . 向右平移个单位长度 C . 向左平移个单位长度 D . 向右平移个单位长度 6.设函数f (x )=cos (x +),则下列结论错误的是 A . f(x)的一个周期为?2π B . y=f(x)的图像关于直线x= 对称 C . f(x+π)的一个零点为x= D . f(x)在(,π)单调递减 7.已知f (x )3x +θ)+cos(2x +θ)(0<θ<π)的图象关于,02π?? ???对称,则函数f (x )在区间ππ,46??-??? ?上的最小值为( )

正余弦函数的性质练习题

正余弦函数的性质练习题 1.已知函数y=sin(4π ω+x )的最小正周期为=ωπ,则3 2 2.f(x)是定义在R 上的奇函数,且f(x+3)=f(x),当2 3 0≤≤x 时,f(x)= -x,则f(-12.5)= 3.设f(x)是定义在R 上以6为周期的函数,f(x)在[]30,内递减,且y=f(x)的图像关于直线x=3对称,则下面结论正确的是( ) A.f(1.5)0), 求函数y=-4asinbx 的最大值为 ,最小值为 ,周期为 6.函数 []πππ ,),3 21sin(2-∈+=x x y 的值域为 7.函数[]πππ 2,2),321sin(2-∈+=x x y 的单调递增区间为 8.已知函数的))(03 sin()( ωπ ω+=x x f 的最小正周期为 π, 则该函数的图像 ( )

A.关于直线4π = x 对称 B.关于点),(04 π 对称 C.关于点),(03π 对称 D.关于直线3 π =x 对称 9.函数)23 s i n (x y -=π 的单调递减区间是 ( ) A.)(1252,122Z k k k ∈?????? +-ππππ B. )(3114,354Z k k k ∈?? ???? +-ππππ C. )(1211,125Z k k k ∈?????? +-ππππ D. )(125,12Z k k k ∈????? ? +-ππππ 10.满足21 )4sin(≥-π x 的x 的集合是 ( ) A.? ?? ???∈+≤≤+Z k k x k x ,121321252|ππππ B. ? ?????∈+≤≤-Z k k x k x ,1272122|ππππ C. ? ?????∈+≤≤+Z k k x k x ,65262|ππππ D. ? ? ? ???∈+≤≤Z k k x k x ,622|πππ

三角函数正余弦函数的图像及性质复习汇总

一、正弦函数和余弦函数的图象: 正弦函数sin y x =和余弦函数cos y x =图象的作图方法:五点法:先取横坐标分别为0,3,,,222ππ ππ 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 二、正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R 。 (2)值域: 1、都是[]1,1-, 2、sin y x =,当()22 x k k Z π π=+ ∈时,y 取最大值1;当()322 x k k Z π π=+ ∈时,y 取最小值-1; 3、cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。 例:(1)若函数sin(3)6 y a b x π=-+的最大值为23,最小值为21 -,则=a __,=b _

(答:,12 a b ==或1b =-); ⑵ 函数y=-2sinx+10取最小值时,自变量x 的集合是_________________________。 (3)周期性: ①sin y x =、cos y x =的最小正周期都是2π; ②()sin()f x A x ω?=+和()cos()f x A x ω?=+的最小正周期都是2|| T πω=。 例:(1)若3 sin )(x x f π=,则(1)(2)(3)(2003)f f f f ++++=___(答:0) ; ⑵.下列函数中,最小正周期为π的是( ) A.cos 4y x = B.sin 2y x = C.sin 2x y = D.cos 4x y = (4)奇偶性与对称性: 1、正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线()2 x k k Z π π=+ ∈; 2、余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z ππ? ?+∈ ???,对称轴是直线()x k k Z π=∈ (正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴的交点)。 例:(1)函数522y sin x π?? =- ??? 的奇偶性是______(答:偶函数); (2)已知函数31f (x )ax b sin x (a,b =++为常数),且57f ()=,则5f ()-=______(答:-5); (5)单调性: ()sin 2,222y x k k k Z ππππ??=-+∈????在上单调递增,在()32,222k k k Z ππππ? ?++∈????单调递减; cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。特别提醒,别忘了k Z ∈! ⑴函数y=sin2x 的单调减区间是( )

《正弦函数、余弦函数的性质》同步训练题

π21 x -z)(k k 223 .k 22∈??????++πππ z)(k 43k ,4k ∈??? ???++ππππz)(k 4k ,4k ∈??? ???+-ππππ)4sin(x y π +=,2,2??????-ππ??? ???-ππ43,4《正弦函数、余弦函数的性质》同步训练题 一、选择题 1、函数 y=sin 的单调增区间是( ). A.[]z)(k )2k 4(,k 4∈+ππ B. []z)(k 2k 4k,4∈+ C.[]z)(k )2k 2(,k 2∈+ππ D. []z)(k 2k 2k,2∈+ 2、函数y=sin2x 的单调减区间是( ) A. B. C. []z)(k k 23,k 2∈+ππππ+ D. 3、函数 在闭区间 ( ). A. 上是增函数 B.??? ???-=4,43y ππ上是增函数 C. []0,π-上是增函数 D. 上是增函数 4、下列四个函数中,既是(0,1/2π)上的增函数,又是以π为周期的偶函数的是( ) . A. sinx y = B. y=x 2sin C. cosx y = D.x 2cos y = 5、下列函数在[,]2π π上是增函数的是( ) A. y=sinx B. y=cosx C. y=sin2x D. y=cos2x 6、函数x 2sin 2y =的奇偶数性为( ).

[]πππ 2,2x)x 21 -3sin(y -∈=A. 奇函数 B. 偶函数 C .既奇又偶函数 D. 非奇非偶函数 二、填空题 7、不等式sinx ≥2 2-的解集是______________________. 三、解答题 8、求出数 的单调递增区间. 以下是答案 一、选择题 1、B 2、B 3、B 4、A 5、D 6、A 二、填空题 7、5[22]45k x k ππ ππ-+<<+ 三、解答题 8、5[,2]3π π

正弦、余弦函数的图象与性质(习题)

正弦、余弦函数的图象与性质(习题) ? 例题示范 例1:已知定义在R 上的函数()f x 既是偶函数又是周期函数.若()f x 的最小正周期是π,且当[0] 2x π∈,时,()sin f x x =,则()3 f 5π的值为( ) A .12- B .12 C .3- D .3 思路分析: 要求( )3 f 5π,根据题目条件,考虑利用()sin f x x =来求解; 结合函数的周期性和奇偶性,将35π转化到区间[0]2 π,上, 再利用解析式求解. ∵函数()f x 的最小正周期是π, ∴( )()()()()33333 f f f f f 5π5π2π2ππ=-π==-π=-, ∵函数()f x 是偶函数, ∴3()()sin 3332 f f πππ-===,故选D . 例2:已知函数ππ2π()2sin(2)()663 f x x x =+∈-,,,则()f x 的单调递增区间是( ) A .ππ()66 -, B .π7π()1212, C .π2π()33, D .ππ()63 -, 思路分析: ∵函数=sin y x 在ππ(2π2π)22 k k k -++∈Z ,()上单调递增, ∴当πππ2(2π2π)622 x k k k +∈-++∈Z ,()时,原函数单调递增, 即当ππ(ππ)36 x k k k ∈-++∈Z ,()时,原函数单调递增. 综合各个选项, 当0k =时,πππ2π()()3663x ∈--,,,即ππ()66 x ∈-,时原函数单调递增,故选A . ? 巩固练习 1. 函数lg(sin )y x =的定义域为( )

4. 函数ππ()sin()36f x x =+的最小正周期是( ) A .3 B .6 C .3π D .6π 5. 函数2()3cos()56f x x π=-的最小正周期是( ) A .52π B .52π C .2π D .5π 6. 函数2()7sin()32 f x x 15π=+是( ) A .周期为3π的偶函数 B .周期为2π的奇函数

正弦函数余弦函数的性质

正弦函数余弦函数的性质 教学目标 1.掌握y=sin x(x∈R),y=cos x(x∈R)的周期性、奇偶性、单调性和最值.(重点) 2.会用正弦函数、余弦函数的性质解决一些简单的三角函数问题.(难点) 3.了解周期函数、周期、最小正周期的含义.(易混点) [基础·初探] 教材整理1函数的周期性 阅读教材P34~P35“例2”以上部分,完成下列问题. 1.函数的周期性 (1)对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期. (2)如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 2.两种特殊的周期函数 (1)正弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. (2)余弦函数是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π. 函数y=2cos x+5的最小正周期是________.

解:函数y =2cos x +5的最小正周期为T =2π. 【答案】 2π 教材整理2 正、余弦函数的奇偶性 阅读教材P 37“思考”以下至P 37第14行以上内容,完成下列问题. 1.对于y =sin x ,x ∈R 恒有sin(-x )=-sin x ,所以正弦函数y =sin x 是奇函数,正弦曲线关于原点对称. 2.对于y =cos x ,x ∈R 恒有cos(-x )=cos x ,所以余弦函数y =cos x 是偶函数,余弦曲线关于y 轴对称. 判断函数f (x )=sin ? ?? ?? 2x + 3π2的奇偶性. 解:因为f (x )=sin ? ???? 2x +3π2=-cos 2x . 且f (-x )=-cos(-2x )=-cos 2x =f (x ),所以f (x )为偶函数. 教材整理3 正、余弦函数的图象和性质 阅读教材P 37~P 38“例3”以上内容,完成下列问题.

正弦型函数的性质和图象教案

重庆市渝中区职业教育中心 数学课程教案 教师 周名昆 第 1 页 第 1 页 共 2 页 [课 题] 5.8函数)sin(?ω+=x A y 的性质和图象 [课 时] 第一课时 [课 型] 新授课 [目 标] 1. 了解正弦型函数的解析表达式中各个符号的实际背景意义; 2. 理解正弦型函数的图象与正弦函数的图象之间的关系; 3. 能够根据表达式正确地指出A 、ω、?并求出最值、最小正周期 [重 点]根据表达式正确地指出A 、ω、?并求出最值、最小正周期 [难 点] 理解正弦型函数的图象与正弦函数的图象之间的关系 [教 法] 讲授法、启发式教学法 [教 具] 教材、实物展示台、多媒体投影 [教学过程] 一、复习引入 1正弦函数在区间[-π,π]上的图象(五点法作出) 2正弦型函数引出:见教材实例 二、新课讲授 1正弦型函数)sin(?ω+=x A y 中各个字母的意义 1)A ——振幅 2)ω——频率(弧度/秒) 3)?——初相 4)??+t ——t 时刻的相位 2正弦型函数的性质:A 、T A ——最值 T ——最小正周期(? π2=T ) 例1已知函数求A (最大值、最小值)、T (ω) x y 5sin 3= )115sin(3π-=x y )875sin(3π+=x y )11 5sin(π+=x y 练习已知函数求A (最大值、最小值)、T (ω) )351sin(6π+=x y )11100sin(24ππ+=x y )4 21sin(2π+=x y x y 5.0sin 13= 3正弦型函数与正弦函数图象之间的关系(利用课件演示) ⑴x A y sin =与x y sin = 振幅变换:y=Asinx ,x ∈R(A>0且A ≠1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(00且ω≠1)的图象,可看作把正弦曲线上

三角函数的图像与性质练习题

. 三角函数的图像与性质练习题 正弦函数、余弦函数的图象 A组 1.下列函数图象相同的是() A. y= sin x 与 y=sin(x+ π) B.y= cos x 与 y= sin - C.y= sin x 与 y=sin( -x) D.y=- sin(2π+x )与 y= sin x 解析 :由诱导公式易知 y= sin- = cos x,故选 B . 答案 :B 2.y= 1+ sin x,x∈[0,2π]的图象与直线y= 2 交点的个数是 () A.0 B.1 C.2 D.3 解析 :作出 y= 1+ sin x 在 [0,2 π]上的图象 ,可知只有一个交点. 答案 :B 3.函数y= sin(-x),x∈[0,2π]的简图是() 解析 :y=sin( -x)=- sin x,x∈ [0,2 π]的图象可看作是由y= sin x,x∈ [0,2 π]的图象关于 x 轴对称得到的 ,故选B. 答案 :B 4.已知cos x=- ,且x∈[0,2π],则角x等于() A. 或 B.或 C.或 D.或 解析 :如图 :

由图象可知 ,x=或. 答案 :A 5.当x∈[0,2π]时,满足sin-≥ -的x的取值范围是() A. B. C. D. 解析 :由 sin -≥ - ,得cos x≥ - . 画出 y=cos x,x∈ [0,2 π],y=- 的图象 ,如图所示 . ∵cos = cos =- ,∴当 x∈ [0,2 π]时 ,由 cos x≥- ,可得 x∈. 答案 :C 6.函数y= 2sin x与函数y=x图象的交点有个. 解析 :在同一坐标系中作出函数 y= 2sin x与 y=x 的图象可见有3个交点. 答案 :3 7.利用余弦曲线,写出满足cos x>0,x∈ [0,2 π]的 x 的区间是. 解析 :画出 y= cos x,x∈ [0,2 π]上的图象如图所示 . cos x>0 的区间为 答案 : 8.下列函数的图象:①y= sin x-1;② y=| sin x|;③y=- cos x;④ y=;⑤y=-.其中与函数y= sin x 图象形状完全相同的是.(填序号 )

正余弦函数的图像与性质(周期性)

第一课时 题目:正弦函数、余弦函数的图象 授课时间:3月25日,星期一 课型:新授课 教学目标: 理解借助单位圆中的三角函数线(正弦线)画出y sin x =的图象,进而画出 y cos x =的图象;会用“五点法”画y sin x =和y cos x =在一个周期内的简图。 教学重点和难点: 重点:利用三角函数线画正弦函数[]x 0,2 蝡的图象,用“五点法”画y sin x =和 y cos x =在一个周期内的简图。 难点:正弦函数与余弦函数图象间的关系、图象变换。 学情分析: 学生在之前已经学了一次函数、二次函数、指数函数、对数函数和幂函数,已掌握了一些基础函数的图像和性质,并了解一些函数图像的画法。而且刚分班学生的学习动力很足,但学生分析、理解能力较差,对具体形象的事物比较感兴趣,但对学习抽象理论知识存在畏难情绪,缺乏学习主动性,因此在教学中要注意引导学生积极思考和多动手画图练习。 教学方法: 通过多媒体展示正弦函数的形成,是学生更直观形象的了解正弦函数的形成,加深印象增加兴趣。并配合适当讲授法。在五点法画图中要学生动手实践,加深印象和理解。 教具、学具的准备:多媒体、直尺、圆规 教学过程: (一)知识链接 1、正弦线的概念 2、诱导公式(六) (二)情景设置 在初中和必修一的函数学习中,我们知道函数的图像为我们解决相关的函数问题提供了重要的方法和工具,那么三角函数的图像是怎样的呢? 这节课让我们来共同探讨正、余弦函数的图像问题。 【设计意图】从原有知识出发,类比联想,引入问题情景,学生主动参与,积极思考 (三)课题导入 提问1、如何作正弦函数的图象? ①列表描点法: 步骤:列表、描点、连线 大家试着画出正弦函数sin y x =[]0,2x π∈的图像

正弦函数的图像和性质

1 定义编辑数学术语 正弦函数是三角函数的一种. 定义与定理 定义:对于任意一个实数x 都对应着唯一的角(弧度制中等于这个实数) ,而这个角又对应 着唯一确定的正弦值Sin X ,这样,对于任意一个实数X都有唯一确定的值Sin X与它对应, 按照这个对应法则所建立的函数,表示为f(x)=sin X ,叫做正弦函数。 正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即a/Sin A=b/Sin B=c/Sin C 在直角三角形ABC中,/ C=90 ,y为一条直角边,r为斜边,X为另一条直角边(在坐标 系中,以此为底),贝U Sin A=y∕r,r= √( x^2+y^2) 2 性质 编辑图像 图像是波形图像(由单位圆投影到坐标系得出) ,叫做正弦曲线(Sine curve) 正弦函数X∈& 定义域 实数集R 值域 [-1,1] (正弦函数有界性的体现) 最值和零点 ①最大值:当X=2k ∏+ ( ∏/2) , k ∈Z 时,y(max)=1 ②最小值:当X=2k ∏+ (3∏/2), k∈Z 时,y(min)=-1 零值点:( kπ ,0) ,k∈Z 对称性 既是轴对称图形,又是中心对称图形。 1) 对称轴:关于直线X= ( π /2) +kπ , k∈Z 对称 2) 中心对称:关于点(k ∏ , 0), k∈Z对称 周期性最小正周期:y=SinX T=2 π 奇偶性 奇函数(其图象关于原点对称) 单调性 在[-∏∕2+2k ∏ , ∏∕2+2k ∏], k∈Z 上是单调递增. 在[∏∕2+2k ∏ , 3∏∕2+2k ∏], k ∈Z 上是单调递减. 3 正弦型函数及其性质 编辑 正弦型函数解析式:y=Asin (ω x+ φ )+h

(完整版)正余弦函数图像和性质练习题

§1.4.1正弦函数、余弦函数的图象和性质 班级 姓名 学号 得分 一、选择题 1.下列说法只不正确的是 ( ) (A) 正弦函数、余弦函数的定义域是R ,值域是[-1,1]; (B) 余弦函数当且仅当x =2k π( k ∈Z) 时,取得最大值1; (C) 余弦函数在[2k π+2π,2k π+32 π]( k ∈Z)上都是减函数; (D) 余弦函数在[2k π-π,2k π]( k ∈Z)上都是减函数 2.函数f (x )=sin x -|sin x |的值域为 ( ) (A) {0} (B) [-1,1] (C) [0,1] (D) [-2,0] 3.若a =sin 460,b =cos 460,c =cos360,则a 、b 、c 的大小关系是 ( ) (A) c > a > b (B) a > b > c (C) a >c > b (D) b > c > a 4. 对于函数y =sin(132 π-x ),下面说法中正确的是 ( ) (A) 函数是周期为π的奇函数 (B) 函数是周期为π的偶函数 (C) 函数是周期为2π的奇函数 (D) 函数是周期为2π的偶函数 5.函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是 ( ) (A) 4 (B)8 (C)2π (D)4π *6.为了使函数y = sin ωx (ω>0)在区间[0,1]是至少出现50次最大值,则的最小值是 ( ) (A)98π (B)1972π (C) 1992 π (D) 100π 二. 填空题 7.函数值sin1,sin2,sin3,sin4的大小顺序是 . 8.函数y =cos(sin x )的奇偶性是 . 9. 函数f (x )=lg(2sin x +1)+ 的定义域是 ; *10.关于x 的方程cos 2x +sin x -a =0有实数解,则实数a 的最小值是 . 三. 解答题 11.用“五点法”画出函数y =12 sin x +2, x ∈[0,2π]的简图.

三角函数正余弦函数的图像及性质复习汇总

课题三角函数的图像及性质 1.借助单位圆中的三角函数线推导出诱导公式( π2/±α , π的±正α弦、余弦、正切) 教学目标 2.利用单位圆中的三角函数线作出y sin x,x R的图象,明确图象的形状; 3.根据关系cosx sin(x ) ,作出y cosx,x R的图象; 2 4.用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题; 重点、难点 1、正确地用三角函数线表示任意角的三角函数值 2、作余弦函数的图象。 教学内容 、正弦函数和余弦函数的图象: -1 正弦函数y sin x 和余弦函数y cos x图象的作图方法:五点法:先取横坐标分别为0,, ,3 ,2 22 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 二、正弦函数y sin x(x R) 、余弦函数y cosx(x R) 的性质: ( 1)定义域:都是R。 (2)值域: 1、都是1,1 , 2、y sinx ,当x 2k k 2 3、y cosx ,当x 2k k Z 例: ( 1)若函数y a bsin(3 x Z 时,y 取最大值1 ;当x 时,y 取最大值1,当x 2k ) 的最大值为3,最小值为 62 3 2k 3 k Z 时,y 取最小值-1; 2 k Z 时,y 取最小值- 1 。 1,则 a __, b _ 2 3 y -2 1 y=cosx -3 -5 -32 -4 -7 -2 -3 22

1 答: a 1 2,b 1或b 1); ⑵ 函数 y=-2sinx+10 取最小值时,自变量 x 的集合是 3)周期性 : (正(余)弦型函数的对称轴为过最高点或最低点且垂直于 x 轴的直线,对称中心为图象与 x 轴的交 点)。 5)单调性 : 别忘了 k Z ! ⑴函数 y=sin2x 的单调减区间是( ① y sin x 、 y cos x 的最小正周期都是 2 ; ② f ( x) A sin( x )和 f (x) Acos( 2 x ) 的最小正周期都是 T 2 sin 3x ,则 f (1) f (2) ⑵.下列函数中,最小正周期为 例: (1)若 f (x) f (3) L 的是( A. y cos 4x B. y sin 2x C.y f (2003) = 答: 0); x sin 2 D.y x cos 4 ( 4)奇偶性与对称性 : 1、正弦函数 y sin x ( x R ) 是奇函 数, 对称中心是 k ,0 k Z ,对称轴是直线 x k k Z ; 2 2、余弦函数 y cosx (x R ) 是偶函数, 对称中心是 k 2 ,0 k Z ,对称轴是直线 x k k Z 5 例:(1) 函数 y sin 5 2 2x 的奇偶性是 答:偶函数); 2)已知函数 f ( x ) a x bsin 3 x 1( a,b 为常数), 且 f (5 ) 7, 则 f ( 5) 答:- 5); y sin x 在 2k , 2k 2 k Z 上单调递增,在 2k , 2k 2 3 k Z 单调递减; 2 y cosx 在 2k ,2 k Z 上单调递减,在 2k ,2k k Z 上单调递增。 特别提醒 ,

正弦函数的性质

正弦函数的性质:编辑本段 解析式:y=sinx 图象:波形图象 定义域:R 值域:【-1,1】 最值: ①最大值:当x=(π/2)+2kπ时,y(max)=1 ②最小值:当x=-(π/2)+2kπ时,y(min)=-1 零值点: (kπ,0) 对称性: 1)对称轴:关于直线x=(π/2)+kπ对称 2)中心对称:关于点(kπ,0)对称 周期:2π 奇偶性:奇函数 单调性:在【-(π/2)+2kπ,(π/2)+2kπ】上是增函数,在【(π/2)+2kπ,(3π/2)+2kπ】上是减函数 余弦函数的性质:编辑本段 余弦函数 图象:波形图象 定义域:R

值域:【-1,1】 最值: 1)当x=2kπ时,y(max)=1 2)当x=2kπ+π时,y(min)=-1 零值点:(π/2+kπ,0) 对称性: 1)对称轴:关于直线x=kπ对称 2)中心对称:关于点(π/2+kπ,0)对称 周期:2π 奇偶性:偶函数 单调性:在【2kπ-π,2kπ】上是增函数 在【2kπ,2kπ+π】上是减函数 tan15°=2-√3 tan30°=√3/3 tan45°=1 tan60°=√3 性质 1、定义域:{x|x≠(π/2)+kπ,k∈Z} 2、值域:实数集R 3、奇偶性:奇函数 4、单调性:在区间(-π/2+kπ,π/2+kπ),(k∈Z)上是增函数 5、周期性:最小正周期π(可用T=π/|ω|来求) 6、最值:无最大值与最小值 7、零点:kπ,k∈Z 8、对称性: 轴对称:无对称轴 中心对称:关于点(kπ/2,0)对称(k∈Z) 9、图像(如图所示) 实际上,正切曲线除了原点是它的对称中心以外,所有x=(2/n)π点都是它的对称中心. 诱导公式 tan(2π+α)=tanα tan(-α) =-tanα tan(2π-α)=-tanα tan(π-α) =-tanα tan(π+α) =tanα tan(α+β) =(tanα+tanβ)/(1-tanα×tanβ) 12.正弦(sin)等于对边比斜边;

正弦型函数练习题

函数sin()y A x ω?=+的图象与性质练习题 一、选择题 1.为得到R x x y ∈+=),63sin( 2π的图像,只需把R x x y ∈=,sin 2的图像上所有点( ) A .向左平移 6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) B .向右平移 6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) C .向左平移 6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) D .向右平移6 π 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) 2.将函数2sin(2)5y x π =+的图象上所有的点的横坐标缩短为原来的12 ,得到新函数的图象,那么这个新函数的解析式是 ( ) A sin(2)5y x π=+ B 2sin()5y x π=+ C 2sin()10y x π=+ D 2sin(4)5y x π =+ 3.要得到3cos(2)4y x π=+ ,x R ∈的图象,只需将函数3cos 2y x =,x R ∈的图象 A 向左平移4π个单位 B 向左平移8 π个单位 ( ) C 向右平移4π个单位 D 向右平移8 π个单位 4.函数3sin(2)6 y x π=+图象的一条对称轴是直线 ( ) A . 0x = B. 6x π= C. 6x π=- D. 3 x π= 5.函数2sin(2)3 y x π=+的图象 ( ) A.关于点π 03 ?? ???,对称 B.关于直线π4x =对称 C.关于点π 04?? ???,对称 D.关于直线π3x =对称 6.振幅为12,周期为23π,初相为6 π的函数可能是 ( ) A 1sin()236x y π=+ B 2sin()26 x y π=- C 1sin(3)26y x π=+ D 1sin(3)26 y x π=-

正、余弦函数的图象和性质

xx -xx 学年度下学期 高中学生学科素质训练 高一数学同步测试(6)—正、余弦函数的图象和性质 一、选择题(每小题5分,共60分,请将正确答案填在题后的括号内) 1.函数)4 sin(π +=x y 在闭区间( )上为增函数. ( ) A .]4 ,43[ππ- B .]0,[π- C .]4 3 ,4[ππ- D .]2 ,2[π π- 2.函数)4 2sin(log 2 1π + =x y 的单调减区间为 ( ) A .)(],4(Z k k k ∈- ππ π B .)(]8,8(Z k k k ∈+- π πππ C .)(] 8 ,83(Z k k k ∈+-π πππ D .)(]8 3 ,8(Z k k k ∈++ππππ 3.设a 为常数,且π20,1≤≤>x a ,则函数1sin 2cos )(2 -+=x a x x f 的最大值为 ( ) A .12+a B .12-a C .12--a D .2 a 4.函数)2 5 2sin(π+=x y 的图象的一条对称轴方程是 ( ) A .2 π - =x B .4 π - =x C .8π=x D .π4 5=x 5.方程x x lg sin =的实根有 ( ) A .1个 B .2个 C .3个 D .无数个 6.下列函数中,以π为周期的偶函数是 ( ) A .|sin |x y = B .||sin x y = C .)32sin(π + =x y D .)2 sin(π +=x y 7.已知)20(cos π≤≤=x x y 的图象和直线y=1围成一个封闭的平面图形,该图形的面积 是 ( ) A .4π B .2π C .8 D .4 8.下列四个函数中为周期函数的是 ( )

1.4.2 正弦函数、余弦函数的性质(二) 知识点及习题

1.4.2 正弦函数、余弦函数的性质(二) 课时目标 1.掌握y =sin x ,y =cos x 的最大值与最小值,并会求简单三角函数的值域或最值.2.掌握y =sin x ,y =cos x 的单调性,并能用单调性比较大小.3.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的单调区间. ______时,y min =-1 一、选择题 1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( ) A .第一象限B .第二象限 C .第三象限D .第四象限 2.若α,β都是第一象限的角,且α<β,那么( ) A .sin α>sin βB .sin β>sin α C .sin α≥sin β D .sin α与sin β的大小不定 3.函数y =sin 2x +sin x -1的值域为( ) A.[]-1,1 B.??? ?-5 4,-1 C.????-54,1D.? ???-1,54 4.函数y =|sin x |的一个单调增区间是( ) A.????-π4,π4 B.????π4,3π4 C.????π,3π2 D.??? ?3π 2,2π 5.下列关系式中正确的是( ) A .sin 11°

6.下列函数中,周期为π,且在???? π4,π2上为减函数的是( ) A .y =sin(2x +π2) B .y =cos(2x +π 2) C .y =sin(x +π) D .y =cos(x +π ) 7.函数y =sin(π+x ),x ∈????-π 2,π的单调增区间是____________. 8.函数y =2sin(2x +π3)(-π6≤x ≤π 6 )的值域是________. 9.sin1,sin2,sin3按从小到大排列的顺序为__________________. 10.设|x |≤π 4 ,函数f (x )=cos 2x +sin x 的最小值是______. 三、解答题 11.求下列函数的单调增区间. (1)y =1-sin x 2; (2)y =log 1 2 (cos2x ). 12.已知函数f (x )=2a sin ????2x -π3+b 的定义域为??? ?0,π 2,最大值为1,最小值为-5,求a 和b 的值. 能力提升 13.已知sin α>sin β,α∈????-π2,0,β∈??? ?π,3 2π,则( ) A .α+β>πB .α+β<π

三角函数的图象与性质练习题及答案

三角函数的图象与性质练习题 一、选择题 1.函数f (x )=sin x cos x 的最小值是 ( ) A .-1 B .-12 C.12 D .1 2.如果函数y =3cos(2x +φ)的图象关于点? ?? ?? 4π3,0中心对称,那么|φ|的最小值为 ( ) A.π6 B.π4 C.π3 D.π2 3.已知函数y =sin πx 3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ( ) A .6 B .7 C .8 D .9 4.已知在函数f (x )=3sin πx R 图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x ) 的最小正周期为 ( ) A .1 B .2 C .3 D .4 5.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `( D ) 6.给出下列命题: ①函数y =cos ? ???? 23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32; ③若α、β是第一象限角且α<β,则tan α

π4) D.y=cos 2x =2cos2x B.y=2sin2x C.y=1+sin(2x+

余弦函数图像和性质练习含答案

课时作业10 余弦函数、正切函数的图象与性质(一) 时间:45分钟 满分:100分 一、选择题(每小题6分,共计36分) 1.函数f (x )=cos(2x -π 6)的最小正周期是( ) A.π2 B .π C .2π D .4π 解析:本题考查三角函数的周期. T = 2π 2 =π. 余弦型三角函数的周期计算公式为2π ω (ω>0). 答案:B 2.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π 3个 单位长度后,所得的图象与原图象重合,则ω的最小值等于( ) A.13 B .3 C .6 D .9 解析:将f (x )向右平移π3个单位长度得g (x )=f (x -π 3)= cos[ω(x -π3)]=cos(ωx -π3ω),则-π 3 ω=2k π, ∴ω=-6k ,又ω>0,∴k <0,当k =-1时, ω有最小值6,故选C.

3.设f (x )是定义域为R ,最小正周期为3π 2 的函数,若f (x )= ????? cos x ? ?? ?? -π2≤x ≤0,sin x 0

1.4三角函数的图像与性质测试题

1.4 三角函数的图像与性质 A 卷 基础训练 一、选择题 1、以下对正弦函数y =sin x 的图象描述不正确的是( ) A .在x ∈[2k π,2k π+2π](k ∈Z )上的图象形状相同,只是位置不同 B .介于直线y =1与直线y =-1之间 C .关于x 轴对称 D .与y 轴仅有一个交点 解析:选C.由正弦函数y =sin x 的图象可知,它不关于x 轴对称. 2、函数y =3cos(25x -π6 )的最小正周期是( ) A.2π5 B.5π2 C .2π D .5π 解析:选D.∵3cos[25(x +5π)-π6]=3cos(25x -π6+2π)=3cos(25x -π6 ), ∴y =3cos(25x -π6 )的最小正周期为5π. 3、下列命题中正确的是( ) A .y =-sin x 为奇函数 B .y =|sin x |既不是奇函数也不是偶函数 C . y =3sin x +1为偶函数 D .y =sin x -1为奇函数 解析:选A.y =|sin x |是偶函数,y =3sin x +1与y =sin x -1都是非奇非偶函数. 4.若函数y =sin(x +φ)(0≤φ≤π)是R 上的偶函数,则φ等于( ) A .0 B.π4 C.π2 D .π 解析:选C.由于y =sin(x +π2)=cos x ,而y =cos x 是R 上的偶函数,所以φ=π2 . 5、函数y =-sin x ,x ∈??? ?-π2,3π2的简图是( ) 解析:选D.用特殊点来验证.x =0时,y =-sin 0=0,排除选项A 、C ;又x =-π2 时,y =-sin ??? ?-π2=1,排除选项B. 6、函数y =1+sin x ,x ∈[0,2π]的图象与直线y =32 的交点个数为( ) A .1 B .2 C .3 D .0 解析:选B.作出两个函数的图象如下图所示,可知交点的个数为2. 7、若函数y =cos 2x 与函数y =sin(x +φ)在区间[0,π2 ]上的单调性相同,则φ的一个值是( ) A.π6 B.π4

相关主题
文本预览
相关文档 最新文档