当前位置:文档之家› 非惯性系中的动力学专题

非惯性系中的动力学专题

3.2 非惯性系中的动力学

【基本知识】

一、联接体问题

在力的作用下一起运动的两个或两个以上的物体,叫做联结体。解有关联结体的问题一般要用到隔离法,适当辅以整体法。联结体总是相联系的两个或多个物体,这种联系既表现在力上,也表现在运动上。力的联系往往会与一些临界情况相结合,运动的联系同样视具体的情况有所不同,可能表现为位移、速度或加速度的某种关系等,这种联系也可以称之为约束。因此,解联结体问题就是寻找约束,然后建立方程。

例如,如果两物以绳、杆相连接,那么沿绳或杆方向的速度相同。如果两个物体直接接触,那么它们在垂直接触面(或切面)方向的速度相同。有些联结体中各物体具有不同的加速度,可以通过它们的受力或运动关系来确定它们的加速度的关系。

例题1:如图所示,两个木块A和B,质量分别为mA和mB,质量分别为mA和mB (只要求帮做一下受力分析)

紧挨着并排放在水平桌面上,A、B间的接触面垂直于图中纸面且与水平成θ角.A、B间的接触面是光滑的,但它们与水平桌面间有摩擦,静摩擦系数和滑动摩擦系数均为μ.开始时A、B 都静止,现施一水平推力F于A,要使A、B向右加速运动且A、B间之间不发生相对滑动,则:1.μ的数值应满足什么条件?

2.推力F的最大值不能超过多少?(只考虑平动,不考虑转动问题)

二、质点系牛顿第二定律及质心运动问题

(1)质点系的牛顿第二定律

如果质点系在任意的x方向上所受的合力为Fx,质点系中n各物体在x方

向的加速度分别是a1x、a2x、…、a nx,那么有:

Fx=m1·a1x+m2·a2x+…+m n·a nx

质点系动力学方程不涉及内力,所以在处理一些联结体问题时利用这个方程

往往能带来很大的方便。

(2)质心和质心的运动

①求质心:在某方向上有n个质点m1、m2、…、mn,在此方向上建立坐标系

的x轴,各质点在x轴上的坐标分别为x1、x2、…、xn,则质心在x坐标上

的位置:

x c=m1x1+m2x2+⋯+m n x n

m1+m2+⋯+m3

同理可以求得质心的速度:

v c=m1v1+m2v2+⋯+m n v n

m1+m2+⋯+m3

质心的加速度:

a c=m1a1+m2a2+⋯+m n a n

m1+m2+⋯+m3

②质心动力学方程:F=ma c F 为此方向上质点系所受的合外力。特例,当F=0时,ac=0,vc不变,意味着质点系整体上做匀速直线运动。而当Vc=0时,意味着质心的位置不变。

例2:一列火车有静止开始在铁路上匀加速直线运动,在前20s内前进了40m.至20s末,最后一节车厢脱钩.若机车的牵引力保持不变,再经过20s,这节车厢停下来.且此时与火车相距84m.求这节车厢质量是原来整列火车质量的几分之几?设运动中车的各部分所受阻力大小不变.

三、非惯性系中的力学问题

1、非惯性系 相对惯性系做变速运动的参考系,牛顿运动定律不适用,称为非惯性系。

2、惯性力 a m -=惯F ,其中a 是非惯性系相对惯性系的加速度。

引入惯性力的概念后,牛顿方程在非惯性系中形式上得以成立,有'a F F m =+惯,式中,F 为真实力,惯F 为惯性力,'a 为质点在非惯性系中的加速度,从产生的效果看,惯性力与真实力一样,都可以改变物体的运动状态,即产生加速度。惯性力的方向与非惯性系的加速度的方向相反,惯F 具体形式与非惯性系的运动状态有关。

(1)平动加速系中的惯性力

在平动加速参考系中,o a m -=惯

F ,o a 为非惯性系的加速度。平动非惯性系中,惯性力由非惯性系相对惯性系的加速度及质点的质量决定,与质点的位置及质点相对于非惯性下速度无关。

(2)匀速转动系统中的惯性力——惯性力离心力

在转动参考系中,r m 2F ω=惯

,式中ω为转动系的角速度,r 为物体在转动系中的矢径.

例3:如图所示,长度分别为L 1和L 2的两根不可伸长的轻绳悬挂着质量都是m的两个小球,它们处于静止状态。中间的小球m1受到水平的冲击,瞬间获得水平向右的速度v0,求此时连接m2的绳的拉力T 是多少?

例4:质量为M的光滑圆形滑块平放在桌面上,一根轻绳跨过此滑块后,两端各挂一个物体,物体的质量分别为m1和m2,如图3.2-4所示,绳子跨过桌边竖直向下,所有摩擦均不计。求滑块M加速度。

提示:先分析极小段位移,有△x M=(△x1+△x2)/2

也就是v M=(v1+v2)/2恒成立咯,因为v=△x/△t

那么就也有△v M=(△v1+△v2)/2

加速度也就有a M=(a1+a2)/2 ,因为a=△v/△t

欢迎您的下载,

资料仅供参考!

致力为企业和个人提供合同协议,策划案计划书,学习资料等

打造全网一站式需求

理论力学简答题

简答题答案 1、说明科里奥利加速度产生的原因。 答:(1)质点具有相对速度v '时,致使质点在活动参考系中的位置发生变化, 从而改变了速度的大小; (2)质点跟随活动参考系转动时,相对速度方向的变化。 2、试推导出质点在非惯性系中的动力学方程,并说明方程中各项的含义。 答:在非惯性系中v r r a a '⨯-'⨯⨯-'⨯-=' ωωωω2)( 动力学方程为v m r m r m a m a m '⨯-'⨯⨯-'⨯-=' ωωωω2)( a m 表示外力; r m '⨯ ω 是由非惯性系的加速转动引起的,与非惯性系的角加速度有关; )(r m '⨯⨯ ωω成为惯性离心力;v m '⨯ ω2科里奥利惯性力。 3.试举两例说明由于地球自转而产生的力学效应,并简述其原因. 答:①如物体的重力随地理纬度的增大而增大,这是地球自转产生惯性离心力 的影响。 ②自由落体的偏东。地球上物体的运动方程为: x 的正方向向南,y 的正方向向东,z 的正方向竖直向上。自由落体的运动方向 向着z 轴的负方向, z 小于零,从运动方程知,物体向东方向受到附加的科里奥利力的作用,即自由落体的偏东。 4.为什么落体会偏东? 答:地球上物体的运动方程为: ⎪⎩⎪ ⎨⎧+-=+-=+=λωλλωλωcos 2)cos sin (2sin 2y m mg F z m z x m F y m y m F x m z y x

x 的正方向向南,y 的正方向向东,z 的正方向竖直向上。自由落体的运动方向向着z 轴的负方向, z 小于零,从运动方程知,物体向东方向受到附加的科里奥利力的作用,即自由落体的偏东。 5、应用非惯性系动力学方程导出质点组对质心的角动量定理. 答:在非惯性系中 对质心的角动量定理:dt L d M '=' 6、分别说明质点组动量守恒定律、动量矩守恒定律、机械能守恒定律成立条件。 答:动量守恒定律成立的条件:合外力为零; 动量矩守恒定律成立的条件;合外力矩为零; 机械能守恒定律成立的条件:外力和非保守内力作功为零。 7.写出在惯量主轴坐标系中,刚体对定点的惯量张量、动量矩以及动能的表达式。 ⎪⎩⎪ ⎨⎧+-=+-=+=λωλλωλωcos 2)cos sin (2sin 2y m mg F z m z x m F y m y m F x m z y x )(d 'd ) ()(22 C i i i e i i i r m F F t r m -++=∑∑∑===⨯+⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯∴n i i i C e i n i i n i i i i r m r F r t r m r t 1 )(11''d 'd 'd d '1 =∑=n i i i r m )(1 1'd 'd 'd d e i n i i n i i i i F r t r m r t ∑∑==⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯∴

大学物理(2.2.2)--常见力非惯性系惯性力

大学物理(2.2.2)--常见力非惯性系惯性力 一、几种常见的力 1.万有引力(Law of Gravitation ) 1)文字叙述:在两个相距为r ,质量分别为m 1,m 2的质点间有万有引力,其方向沿着它们的连线,其大小与它们的质量的乘积成正比,与它们之间的距离的平方成反比,即2)数学表示 0221 r r m m G F = ——引力质量Gravitational Mass 其中 211..1067.6--?=kg m N G ——引力常量。 2.重力(Gravity )——本质上归结于万有引力。 1)文字叙述:物体重力就是指忽略地球的自转效 应时,地球表明附近物体所受的地球的引力,即物体与 地球之间的万有引力。其方向指向地心。 2)数学表示 G=mg g=9.8m.s -2——重力加速度。 3)思考题: 赤道的重力加速度大还是两极的重力加速度大?为什么? 3.弹性力(Elastic Force ) 大家知道,两个物体相互接触,彼此将产生形变,使其内部产生反抗力——形变恢复力(弹性力)。形变是产生弹性力的条件之一。例如:板擦和桌子相互接触,彼此有了一定的形变,在各自的接触部分产生弹性力。所以,弹性力是一种与物体的形变有关的接触力。即发生形变的物体,由于要恢复原状,对与它接触的物体会产生力的作用,这种物体因形变而产生欲使其恢复原来形状的力叫做弹性力。常见的弹性力有:1)弹簧中的弹性力:弹簧被拉伸或压缩时产生的弹性

力。 胡克定律(Hooke Law ):在弹性限度内,弹性力的大小与弹簧的伸长量成正比,方向指向平 衡位置。 数学表示 f=-kx—— k 为弹簧的劲度系数(Stiffness )。 k 的值决定于弹簧本身的性质。而弹簧弹性力的方向总是指向平衡位置。 2)绳子被拉紧时所产生的张力 绳的张力:即绳内部各段之间的弹 性作用力。下面以AB 段为研究对象,设 其质量为m A 点和B 点的张力:'A A T T -=、'B B T T -=由牛顿第二定律:a m T T B A =+(1)当a =0或者m →0时,F T T B A =-=',绳子上各点张力相同而且拉力相等。 (2)当a ≠0,而且m ≠0 (绳子质量不能忽略时),绳子上各点的张力不F 图2-2 弹簧的弹力 m 同。 (3)张力的大小取决于绳被拉紧的程度,它的方向总是沿着绳而指向绳要收缩的方向。 3)正压力(作用在支承面上)和支持力(作用在物体上)

非惯性系下质点的力学行为特征

非惯性系下质点的力学行为特征 在经典力学中,我们通常将物体的运动视为在惯性系中进行的。惯性系是一个特殊的参考系,其中物体的运动受到牛顿定律的简单描述。然而,在现实世界中,我们经常会遇到非惯性系,即参考系本身也在加速运动。在非惯性系下,质点的力学行为将会有一些特殊的特征。 首先,非惯性系下的质点会受到惯性力的作用。惯性力是由于参考系的加速度引起的一种虚拟力。它的大小和方向与质点的质量和参考系的加速度有关。当参考系加速度为零时,惯性力也为零,此时质点的力学行为与惯性系下相同。但当参考系加速度不为零时,惯性力的作用将会改变质点的运动轨迹。 其次,非惯性系下质点的受力分析需要考虑到离心力和科里奥利力的作用。离心力是由于质点在非惯性系中的加速度引起的一种力。它的大小与质点的质量、参考系的角速度以及质点与参考系的距离有关。离心力的作用使得质点在非惯性系中的运动轨迹发生偏离,呈现出离心的特征。 科里奥利力是由于质点在非惯性系中的角速度引起的一种力。它的大小和方向与质点的质量、参考系的加速度、角速度以及质点与参考系的速度有关。科里奥利力的作用使得质点在非惯性系中的运动轨迹发生旋转,呈现出旋转的特征。 除了惯性力、离心力和科里奥利力,非惯性系下质点的力学行为还受到其他外力的作用。这些外力可以是重力、摩擦力、弹力等。在非惯性系中,这些外力的大小和方向也会受到参考系的加速度和角速度的影响。因此,非惯性系下质点的受力分析需要综合考虑所有相关因素。 非惯性系下质点的力学行为特征不仅仅体现在受力分析上,还体现在质点的运动方程和动力学性质上。在非惯性系下,质点的运动方程将会包含加速度和角加速度的项。这些项反映了参考系的变化对质点运动的影响。此外,非惯性系下质点的动力学性质也会发生变化,例如质点的动量和角动量的守恒性质可能会受到影响。

动力学基础知识(惯性力、阻尼等)

惯性力 惯性系:相对于地球静止或作匀速直线运动的物体 非惯性系:相对地面惯性系做加速运动的物体 平动加速系:相对于惯性系作变速直线运动,但是本身没有转动的物体.例如:在平直轨道上加速运动的火车 转动参考系:相对惯性系转动的物体.例如:转盘在水平面匀速转动 惯性力:指当物体加速时,惯性会使物体有保持原有运动状态的倾向,若是以该物体为坐标原点,看起来就彷佛有一股方向相反的力作用在该物体上,因此称之为惯性力。因为惯性力实际上并不存在,实际存在的只有原本将该物体加速的力,因此惯性力又称为假想力。当系统存在一加速度a时,则惯性力的大小遵从公式:F=-ma 例如,当公车煞车时,车上的人因为惯性而向前倾,在车上的人看来彷佛有一股力量将他们向前推,即为惯性力。然而只有作用在公车的煞车以及轮胎上的摩擦力使公车减速,实际上并不存在将乘客往前推的力,这只是惯性在不同坐标系统下的现象 注意:惯性力和离心力一样,是没有施力物体的,所以从力的要素来看,是不存在这样的力的。那么为什么要有这样一个概念呢?简单一点讲是为了满足牛顿运动定律在非惯性系中的数学表达形式不变而引入的。所谓非惯性系,简单一点将就是做变速运动的参考系。所以说到底,所谓惯性力和离心力就是在一个加速运动的参考系中观察到的物体惯性的表达形式,是为了计算方便而人为引入的一个概念。 ANSYS中的动力学分析 1动力学分析是用来确定惯性(质量效应)和阻尼起重要作用时的结构或构件动力学特性的技术。 2“动力学特性”可能指的是下面的一种或几种类型 -振动特性:结构振动方式和振动频率 -随时间变化载荷的效应(例如:对结构位移和应力的效应) -周期(振动)或随机载荷的效应 3动力学分析类型 -模态分析:确定结构的振动特性 -瞬态动力学分析:计算结构对时间变化载荷的响应 -谐响应分析:确定结构对稳态简谐载荷的响应 -谱分析:确定结构对地震载荷的响应 -随机振动分析:确定结构对随机震动的影响

非惯性系中动力学问题的讨论讲解

包头师范学院 本科毕业论文 论文题目:非惯性系中动力学问题的讨论 院系:物理科学与技术学院 专业:物理学 姓名:王文隆 学号: 0809320007 指导教师:鲁毅 二〇一二年三月

摘要 综述了近几十年来国内外学者对非惯性系动力学方面的研究情况 ,以及对非惯性系动力学的实际应用情况。介绍了在非惯性系中建立动力学方程的方法 ,惯性系中拉格朗日方程在非惯性系中的转换形式 ,以及非惯性系中的能量定理和能量守恒定律的应用等研究成果。最后 ,概述了一些运用非惯性系动力学的方法来解决非惯性系中的理论和实际工程应用两方面的文献 ,并且对非惯性系的研究和应用进行了展望。 关键词:非惯性系;惯性力;动力学方程;拉格朗日方程;动量定理; 动能定律;守恒定律

Abstract And under classical mechanics frame, the conservation law, leads into the inertial force concept according to kinetic energy theorem , moment of momenum theorem , mechanical energy in inertia department, equation having infered out now that the sort having translation , having rotating is not that inertia is to be hit by dynamics, priority explains a few representative Mechanics phenomenon in being not an inertia department. Key words:Non- inertia Inertial force Kinetic energy theorem Mechanical energy conserves Apply

非惯性系中的力学

非惯性系中的力学 牛顿运动定律只适用于惯性系,在非惯性系中,为了能得到形式上与牛顿第二定律一致的动力学方程,就需要引入惯性力的概念. 一.直线加速系中的惯性力 设非惯性参考系的加速度为a 参,物体相对于参考系的加速度为a 相 ,物体实际的加速度为a 绝, 则有: a绝= a参+a相.那么,物体”受到”的惯性力F惯=-m a参,其方向与a参的方向相反. 惯性力是虚构的力,不是真实力,因此,惯性力不是自然界中物体间的相互作用,因此不属于牛顿第 三定律涉及的范围之内,它没有施力物体,不存在与之对应的反作用力. 在非惯性系中,考虑到惯性力后的动力学方程为: 式中, F 合 为物体实际受到的合力. 二,匀速转动系中的惯性力 圆盘以角速度ω绕铅直轴转动,在圆盘上用长为r的轻线将质量为m的小球系于盘心且小不球相对于圆盘静止,即随盘一起作匀速圆周运动.从惯性系观察,小球在线拉力T的作用一下作圆周运动,符合牛顿第二定律.以圆盘为参考系,小球受到拉力T的作用,却保持静止,没有加速度,不符合牛顿第二定律.所以,相对于惯性系作匀速转动的参考系也是非惯性系,要在这种参考系中保持牛顿第二定律 形式不变,在质点静止于此参考系的情况下,应引入惯性力:F 惯 =mω2r.这个力叫做惯性离心力.若质点静止于匀速转动的参考系中,则作用于此物体所有相互作用力与惯性离心力的合力等于零,即: 例1.在火车车厢内有一长l,倾角为的斜面,当车厢以恒定加速度a0从静止开始运动时,物体自倾角为θ的斜面顶部A点由静止开始下滑,已知斜面的静摩因数为μ,求物体滑至斜面底部B点时,物体相对于车厢的速度,并讨论当a0与μ一定时,倾角θ为多大时,物体可静止于A点? 例2.如图所示,定滑轮A的一侧持有m1=5kg的物体,另一侧挂有轻滑轮B,滑轮B两侧挂着民m2=3kg,m3=2kg的物体,求每个物体的加速度。

非惯性系下力学问题.

渤海大学 本科毕业论文 题目非惯性系下力学问题的研究完成人姓名张亚楠 主修专业物理学教育 所在院(系)数理学院物理系入学年度2008年 完成日期2011年6月1日指导教师丁文波

非惯性系下力学问题的探讨 张亚楠渤海大学物理系 摘要:非惯性参照系就是能够对同一个被观测的单元施加作用力的观测参照框架和附加非线性的坐标系的统称。在经典机械力学中,任何一个使得“伽利略相对性原理”失效的参照系都是所谓的“非惯性参照系”。了解非惯性系下的力学问题很重要。对于非惯性系的研究已经从传统的理论已经从传统的理论教学扩展到实际生活应用领域,从宏观研究深入到微观领域。随着生活领域的不断扩大,对非惯性系下的元器件动力学行为,特别是非线性动力学行为的研究还有很大的空间。在直升机转子等航空发动机转子的动力学研究中,应用的也主要是非惯性系动力学的理论知识。近年来通过研究发现,在非惯性系中两体问题、摩擦力、压强以及浮力问题等都得以解决。本文阐述了惯性系和非惯性系的区别,由惯性力着手,把牛顿第二地定律引入到非惯性系中,分析了牛顿第二定律的适用条件,并对非惯性系下的力学问题进行研究。第一部分对非惯性系和惯性系进行概述。第二部分对非惯性系下摩擦力的研究进行了讲述,摩擦力从动于包括惯性力在内的其它力作用。第三部分通过分析在非惯性系中液体内部浮力和压强的变化,阐述了在不同参考系下液体浮力和压强的变化规律。 关键词:非惯性系;摩擦力;压强;浮力

Mechanics Problems in the non-inertial frame Zhang Ya-nan Department of Physics,Bohai University Abstract:Collectively referred to as the coordinate system of the observation frame of reference and additional non-linear non-inertial frame of reference is the ability to exert force on the same observation unit. In classical mechanics, no one makes the "failure of the principle of Galilean relativity" frame of reference is the so-called "non-inertial frame of reference. Mechanical problem is very important to understand the non-inertial frame. For non-inertial frames from the traditional theory has been expanded from the traditional teaching of the theory to real-life applications, from a macro research into micro areas. With the continuous expansion of areas of life, the dynamic behavior of non-inertial frame components, especially the study of nonlinear dynamic behavior there is a lot of space. The study of helicopter rotor aero-engine rotor dynamics, the application of theoretical knowledge of non-inertial frame dynamics. In recent years, the study found that two-body problem in the non-inertial, friction, pressure and buoyancy problems are all resolved. This paper describes the difference between inertial frames and non-inertial frames, to proceed by the inertia force, the introduction of Newton's second law of land to the non-inertial reference frame, Newton's Second Law applies to conditions, mechanical problems and non-inertial frame study. The first part an overview of the non-inertial frames and inertial frames. The

非惯性系中的力学

非惯性系中的力学 在经典力学中,我们通常将研究对象限定在惯性系中。惯性系是指 一个不受任何外力或惯性力作用的参考系。然而,在许多实际情况下,我们无法避免研究非惯性系中的力学。非惯性系中的力学研究相对复杂,但它在解释许多日常生活中的现象、工程设计以及航天飞行等方 面具有重要的意义。 一、引言 在力学研究中,我们常常使用牛顿定律来描述物体的运动,即 F=ma,其中F为物体所受合力,m为物体的质量,a为物体的加速度。然而,牛顿定律仅在惯性系中成立,当系统处于非惯性系中时,就需 要考虑惯性力的作用。 二、非惯性力的概念和作用 非惯性力是指在非惯性系中对物体产生的看似存在的力,实际上是 由于非惯性系的运动而产生的惯性效应。常见的非惯性力有离心力、 科里奥利力以及向心力等。 离心力是一个物体在非惯性系中沿着旋转轴的方向产生的力,它的 大小与物体的质量、距离旋转轴的距离以及角速度有关。离心力在许 多日常生活场景中起着重要作用,比如旋转游乐设施中的体验、地球 自转引起的地球形状畸变等。 科里奥利力是一个物体在非惯性系中由于角速度的改变所产生的力。科里奥利力的方向垂直于运动方向和旋转轴,在天文学、航天飞行等

领域有重要的应用。例如,地球上飞行的飞机或火箭就需要考虑科里 奥利力的影响。 向心力是一个物体在非惯性系中沿着旋转轴的方向产生的力,它与 物体的质量、旋转角速度以及距离旋转轴的距离有关。向心力在转弯 的机动车辆、垂直旋转的过山车等情况下起着重要作用。 三、非惯性系中的运动方程 在非惯性系中,我们需要修正牛顿定律,使其适用于非惯性系的情况。修正后的运动方程为F=m(a-a'),其中a'为非惯性系的加速度。非 惯性系中的运动方程相对复杂,因为我们需要考虑添加的惯性力对物 体运动所产生的影响。 四、实例分析 接下来,我们通过几个实例来说明非惯性系中的力学问题。 1. 旋转地球上的自由落体 在地球自转的惯性系中,物体的自由落体可以简单地由重力加速度 描述。然而,在地球自转的非惯性系中,我们需要考虑离心力和科里 奥利力的影响。这些额外的力将使自由落体轨迹不再是简单的抛物线,而是呈现出特殊的弯曲轨迹。 2. 旋转平台上的物体运动

惯性参考系与非惯性参考系中的动能定理

惯性参考系与非惯性参考系中的动能定理 摘 要 动能定理做为高中物理一条重要的规律,并没有提及在不同的参考系中使用的问题。本文对惯性参考系和非惯性参考系中动能定理的表达式进行了探讨。 关键词:动能定理 惯性参考系 非惯性参考系 表达式 质点动能定理的经典表述为:质点的动能的增量等于作用于质点的合力所做的功。即: 微分形式: ⎪⎭ ⎫ ⎝⎛=221mv d dW 积分形式: ⎰⎰⎪⎭ ⎫ ⎝⎛=v v mv d W d 02021 或: W =k E ∆ 在高中物理中并没有提及运用动能定理的参考系的选取,而一般情况下也都是选取地面 为参考系,那么如果选取其他的参考系动能定理是否依然成立,下面对这个问题进行了探讨。 1. 惯性参考系中的动能定理 所谓惯性参考系,就是适用于牛顿运动定律的参考系。地球或静止在地面上的物体可以认为是惯性参考系,相对于惯性参考系作匀速直线运动的参考系也是惯性参考系。经典力学认为,牛顿第二定律的数学形式与惯性参考系选取无关,那么作为牛顿第二定律重要推导—动能定律是否也与惯性参考系选取无关呢? 在例1中求证,如图1两个参考系,地面为固定参考系O ',光滑木板以速度v 做匀 速直线运动,木板为一惯性参考系O 。一质量为m 的物体,在木板参考系O 中,0t 时刻初速度为1v ,在恒力F 的作用下,在运动方向上发生一段位移s ,1t 时刻速度增加到 2v 。 1.1惯性参考系中功的计算 功的定义为:r d F dW ⋅= a) 在木板参考系即惯性参考系O 中: s F W ⋅= ① b) 在地面参考系即惯性参考系O '中: 由伽利略变换可知,位移vt s s +=',两参考系中时间相同2 12v v s t += ()⎪⎪⎭⎫ ⎝ ⎛++⋅=+⋅='⋅='212v v sv s F vt s F s F W ② 2v 1v 图 1

有关非惯性系中的单摆运动问题归类解析

有关非惯性系中的单摆运动问题归类解析 非惯性系中的单摆运动问题非惯性系中的单摆运动是一个比较经典的物理问题,它是物理力学中许多有趣的问题的基础,可以用来描述多种实际情况,如横摆、旋转系统等。 一、运动的基本特征单摆运动是指一支摆锤绕它的旋转轴旋转而产生的运动,它具有一定的特征: 1.单摆运动是一种持续的周期性运动,它的旋转角度随时 间变化,但总是在一定的时间周期内循环,即它的运动轨迹是一个椭圆形。 2.单摆运动的最大旋转角度称为摆动角度,它表示摆锤离 开平衡位置的最大角度,这个角度是由摆锤的质量、长度和旋转轴的质量决定的。 3.单摆运动的速度变化不均匀,在摆动角度的最大和最小 值处,速度最小,而在摆动角度的中间值处,速度最大。 4.单摆运动的周期与摆动角度有关,摆动角度越大,周期 越长,反之摆动角度越小,周期越短。 二、基本方程单摆运动的基本方程是描述单摆运动规律的基础,它可以用来计算单摆运动的周期、最大摆动角度等,它的形式如下:$\frac{d^2\theta}{dt^2}+\frac{g}{l}\theta=0$其中 θ表示摆锤的摆动角度,l表示摆锤的长度,g表示重力加速度。

三、运动的动力学单摆运动的动力学分析可以帮助我们更好地理解单摆运动的机理,主要包括以下几个方面: 1.在单摆运动中,重力势能和弹性势能是摆锤运动的两个 主要力量,它们相互作用,使摆锤在持续的周期内循环运动。 2.单摆运动中,摆锤的质量及长度和旋转轴的质量是决定 摆动角度和周期的重要因素。 3.重力加速度的大小决定了摆锤的运动轨迹,在地球表面 的重力加速度都是相等的,因此摆锤的运动轨迹都是椭圆形的,但在空间环境中,重力加速度分布不均匀,摆锤的运动轨迹就不再是椭圆形了。 4.在单摆运动中,摆锤的摆动角度和周期会随时间变化, 但摆动角度的变化不会超过摆锤的最大摆动角度,而周期也会在一定的范围内变化。 综上所述,非惯性系中的单摆运动是一个比较经典的物理问题,它具有一定的特征,可以用基本方程和动力学来描述它的运动规律,为多种实际情况的研究提供了基础。

惯性力非惯性参考系下的运动情况

惯性力非惯性参考系下的运动情况惯性力是指在非惯性参考系中观察到的力,其产生的原因是非惯性 参考系的加速度导致物体产生假惯性力。在本文中,我们将讨论惯性 力在非惯性参考系下的运动情况,以便更好地理解物体在非惯性参考 系中的运动规律。 一、惯性力的定义与原理 在惯性参考系中观察到的物体运动是简单而直观的,而在非惯性参 考系中观察到的物体运动则会产生额外的力。这种额外的力即为惯性力,它的大小和方向与物体的加速度、质量和距离相关。 按照惯性力的定义,我们可以推导出其数学表达式:F惯性= -ma,其中F惯性为惯性力,m为物体的质量,a为非惯性观察系的加速度。 根据牛顿第二定律,物体受到的合力等于其质量乘以加速度,因此在 非惯性参考系中,物体所受的合力为质量乘以非惯性观察系的加速度 减去惯性力。 二、非惯性参考系下的匀速直线运动 在非惯性参考系下,观察到的物体的运动状态可能与惯性参考系中 存在一定的差异。特别是在匀速直线运动中,惯性力的作用会使物体 产生额外的加速度,从而导致物体的运动轨迹发生变化。 以一个简单的例子来描述非惯性参考系下的匀速直线运动。假设一 个小球在一个以加速度a观察的非惯性参考系中做匀速直线运动,而 在惯性参考系中,小球的运动状态是静止的。

根据公式F惯性 = -ma,可知在非惯性参考系中,惯性力与质量成反比。因此,在一个给定的非惯性参考系中,小球的惯性力大小与其质量越小,加速度越大;相反,质量越大,加速度越小。这是因为较小的质量对惯性力的抵抗能力较弱。 三、非惯性参考系下的曲线运动 除了匀速直线运动,非惯性参考系下的曲线运动也是需要考虑的情况。在惯性参考系中,物体在曲线运动中会受到一个向心力的作用,该向心力是使物体维持其曲线轨迹的力。然而,在非惯性参考系中,由于惯性力的存在,物体受到的合力并不等于向心力。 以一个小车在非惯性参考系中作匀速圆周运动为例。在惯性参考系中,小车顺时针或逆时针匀速行驶,由于受到向心力的作用,小车能够维持在圆周轨迹上。然而,在非惯性参考系中观察到的小车运动将会受到惯性力的影响,从而使其轨迹产生偏移。 根据惯性力的数学表达式F惯性 = -ma,我们可以推导出非惯性参考系中物体所受合力与向心力之间的关系。当物体处于非惯性参考系的圆周运动中时,向心力与惯性力的叠加将使得物体受到的合力产生一个额外的分量,将物体推离圆心。因此,在非惯性参考系下观察到的曲线运动将出现一个离开中心的效应。 综上所述,在非惯性参考系下的运动情况存在着惯性力的影响,从而导致物体运动状态的变化。在匀速直线运动中,惯性力会使物体产生额外的加速度,使其运动轨迹发生变化。而在曲线运动中,则会使物体离开圆心,造成轨迹的偏移。这些现象的解释和讨论有助于我们

解答非惯性参考系内动力学问题的三种思路

解答非惯性参考系内动力学问题的三种思路作者:宋兴会 来源:《中学教学参考·理科版》2021年第11期

[摘要]解答非惯性参考系内的动力学问题,既可以重选惯性参考系,又可以根据等效原理把非惯性参考系转换为惯性参考系,还可以对物体添加平衡力使物体的不平衡状态转换为其他的不平衡状态,甚至平衡状态,再分别进行解答。

[关键詞]非惯性参考系;参考系转换法;运动状态转换法 [中图分类号] G633.7 [文献标识码] A [文章编号] 1674-6058(2021)32-0054-03 当我们站在电梯中随电梯匀速上升或者匀速下降时,感觉和人静止站立在地面上时一样,此时支持力等于重力,合外力等于零,人相对电梯的加速度也等于零,符合“合外力等于物体质量与物体加速度相乘”的牛顿第二定律,电梯是惯性参考系。当我们站在电梯中随电梯开始上升或者开始下降时,随电梯即将停止上升或者即将停止下降时,感觉和人静止站立在地面上时不一样,此时人“超重”或“失重”,支持力大于或小于重力,合外力不等于零,而人相对于电梯的加速度却等于零,不符合“合外力等于物体质量与物体加速度相乘”的牛顿第二定律,电梯是非惯性参考系。参考系是惯性参考系还是非惯性参考系,是用牛顿第二定律解答动力学问题之前需要弄清楚的问题,否则就可能会判断错误。下面结合例题进行分析探讨。 题目:(2015年高考物理海南卷第9题)如图1所示,升降机内有一固定斜面,斜面上放一物块,开始时升降机做匀速运动,物块相对斜面匀速下滑。当升降机加速上升时()。 A.物块与斜面间的摩擦力减小 B.物块与斜面间的正压力增大 C.物块相对于斜面减速下滑 D.物块相对于斜面匀速下滑 分析:该题中升降机开始时做匀速向上的运动,升降机和斜面对在斜面上运动的物块来说是惯性参考系,物块的运动符合“合外力等于物体质量与物体加速度相乘”的牛顿第二定律。此时在斜面上匀速下滑的物块受重力、支持力、滑动摩擦力三个力作用而平衡,支持力与重力沿垂直于斜面斜向下方向的分力抵消,滑动摩擦力与重力沿平行于斜面斜向下方向的分力抵消。升降机加速上升时,升降机内物体“超重”,原先在斜面上匀速下滑的物块受到的支持力、滑动摩擦力都变大了,而重力大小没有变,滑动摩擦力大于原先与其平衡的重力沿平行于斜面斜向下方向的分力,所以有人就推测出物块沿斜面减速下滑的结论,误选了选项C;这是没有考虑到斜面随升降机加速上升时斜面相对在斜面上运动的物块来说是非惯性参考系,物块的运动不符合“合外力等于物体质量与物体加速度相乘”的牛顿第二定律而导致的。 解答思路一,重选参考系 (1)升降机做匀速运动时,物块相对斜面匀速下滑,此时物块受重力、支持力、滑动摩擦力三个力的作用,如图2所示,合外力为零。将重力沿平行于斜面方向和垂直于斜面方向正交分解,三力平衡的受力情形就转化为两个二力平衡的受力情形。设斜面的倾角为[θ],物块

非惯性系中的功能原理及应用

非惯性系中的功能原理及应用 摘要: 在理论力学中,关于非惯性参照系中动力学问题,从来未涉及到非惯性系中的功能原理。为此,本文先推证出质点系相对非惯性系的动能定理,再推出质点系相对非惯性系的功能原理及机械能守恒定理,然后再运用此原理解决实际问题。 关键词: 非惯性系;牵连惯性力;科氏惯性力;功能原理;机械能守恒定理 The function of the inertial system principle and application Abstract: In the theory of mechanics,about the dynamics inertia reference in question never involved in noninertial system function and principle.For this reason this paper first inferred, particle system to a relative non-inertial systems of kinetic energy theorem,and then launch the relative particle noninertial system of function and principle, the last to solve practical problems by using the principle. Key words: Noninertial system; Involved the inertial force; Division type inertia force; principle of work and energy; Mechanical energy conservation theorem 0 引言 处理非惯性参考系中的动力学问题有两种方法,一种是在惯性参考系中考虑问题,然后运用相对运动的关系进行两种坐标参考系之间坐标、速度和加速度诸量的转换,化成非惯性系中的结论。另一种方法是研究在非惯性系中适用的动力学基本方程,从而研究非惯性系中的动力学问题。关于关于非惯性系中的动力学问题,在理论力学中只是研究动力学方程。机械能是自然界普遍存在的,在非惯性系中也

非惯性系中的动力学专题

3.2非惯性系中的动力学 【基本知识】 一、联接体问题 在力的作用下一起运动的两个或两个以上的物体,叫做联结体。解有关联结体的问题一般要用到隔离法,适当辅以整体法。联结体总是相联系的两个或多个物体,这种联系既表现在力上,也表现在运动上。力的联系往往会与一些临界情况相结合,运动的联系同样视具体的情况有所不同,可能表现为位移、速度或加速度的某种关系等,这种联系也可以称之为约束。因此,解联结体问题就是寻找约束,然后建立方程。 例如,如果两物以绳、杆相连接,那么沿绳或杆方向的速度相同。如果两个物体直接接触,那么它们在垂直接触面(或切面)方向的速度相同。有些联结体中各物体具有不同的加速度,可以通过它们的受力或运动关系来确定它们的加速度的关系。 例题1:如图所示,两个木块A和B,质量分别为mA和mB,质量分别为mA和mB (只要求帮做一下受力分析) 紧挨着并排放在水平桌面上,A、B间的接触面垂直于图中纸面且与水平成θ 角.A、B间的接触面是光滑的,但它们与水平桌面间有摩擦,静摩擦系数和滑动摩擦系数均为μ.开始时A、B都静止,现施一水平推力F于A,要使A、B向右加速运动且A、B间之间不发生相对滑动,则: 1.μ的数值应满足什么条件? 2.推力F的最大值不能超过多少?(只考虑平动,不考虑转动问题)

二、质点系牛顿第二定律及质心运动问题 (1)质点系的牛顿第二定律 如果质点系在任意的x方向上所受的合力为Fx,质点系中n各物体在x方向的加速度分别是a1x、a2x、…、anx,那么有: Fx=m1·a1x+m2·a2x+…+mn·anx 质点系动力学方程不涉及内力,所以在处理一些联结体问题时利用这个方程往往能带来很大的方便。 (2)质心和质心的运动 1 求质心:在某方向上有n个质点m1、m2、…、mn,在此方向上建立坐标系的x轴,各质点在x轴上的坐标分别为x1、x2、…、xn,则质心在x坐标上的位置: = 同理可以求得质心的速度:

非惯性系下的拉格朗日方程及其应用

非惯性系下的拉格朗日方程及其应用 摘要本文介绍了在非惯性系中建立动力学方程的方法,惯性系中拉格朗日方程在非惯性系中的转换形式,以及非惯性系中的应用等研究成果。 关键词非惯性;拉格朗日方程;应用 在运用拉格朗日方程的计算中,多是在惯性系中进行的。诚然在惯性系中运用拉格朗日方程有很多方便之处。但是有时会遇到在惯性系中考察则不易求出物体的动能。 例:如图,物体绕Z轴转动,不易求出转动惯量IZ,则转动动能不易求出,进而质点P的总的动能不易求出。在惯性系下运用拉格朗日方程有困难。此时,如果考虑在非惯性系中,采用非惯性系下的拉格朗日方程,可能使得问题容易解决,从而得到解决问题的另一条途径。 1)在非惯性系下拉格朗日方程的形式 在非惯性系中,牛顿定律形式上成立,则由几个质点所形成的力学体系的动力学方程可写为 或 其中,为作用在第i个质点的约束反力的合力,为作用在第i个质点上的惯性力的合力,为主动力的合力。在理想约束的条件下,则得: 把不独立的等改为用广义坐标等来表示,则上式变为: (1.1式) 以下的推导过程可采用《理论力学教程》第二版(作者:周衍柏)中的推导方法。只是在末尾增添上此项:

令进而推导可得: 将(A)中的三个式子代入(1.1式)可得: 由于相互独立,故得: (1.2式) 这就是在非惯性系下的拉格朗日方程的基本形式。 2)存在属于保守力的惯性力 (1)根据保守力的定义或斯巴克斯公式易证牵连惯性力是保守力; (2)由于惯性离心力是有心力,易证有心力属于保守力。 3)在非惯性系下的保守系的拉格朗日方程的形式对保守力系而言存在势能V,且: (B)式对也成立。 把(B)式代入(A)式,则: 同理也可求得。 其中V1属于保守力的主动力作用于力系而具有的势能;V2为属于保守力的惯性力的作用而具有的势能。 令,即V为总的势能,则(1.2)可改写为: 令,即L为非惯性系下的拉格朗日函数,则可得: (1.3) 4)非惯性系下的拉格朗日方程的运用 例1:一个光滑细管可在竖直平面内绕通过其一端的水平轴以匀角速转动。管中有一质量为m的质点。开始时,细管取水平方向,质点距转动轴的距离为a,质点相对于管的速度为v0,试由拉格朗日方程求质点相对于管的运动规律。 解;首先分析力。因科氏力在物体运动方向上不做功,由于求质点相对于管的运动规律,故可用(1.3)。

相关主题
文本预览
相关文档 最新文档