当前位置:文档之家› 非惯性系中的动力学专题

非惯性系中的动力学专题

非惯性系中的动力学专题
非惯性系中的动力学专题

3.2非惯性系中的动力学

【基本知识】

一、联接体问题

在力的作用下一起运动的两个或两个以上的物体,叫做联结体。解有关联结体的问题一般要用到隔离法,适当辅以整体法。联结体总是相联系的两个或多个物体,这种联系既表现在力上,也表现在运动上。力的联系往往会与一些临界情况相结合,运动的联系同样视具体的情况有所不同,可能表现为位移、速度或加速度的某种关系等,这种联系也可以称之为约束。因此,解联结体问题就是寻找约束,然后建立方程。

例如,如果两物以绳、杆相连接,那么沿绳或杆方向的速度相同。如果两个物体直接接触,那么它们在垂直接触面(或切面)方向的速度相同。有些联结体中各物体具有不同的加速度,可以通过它们的受力或运动关系来确定它们的加速度的关系。

例题1:如图所示,两个木块A和B,质量分别为mA和mB,质量分别为mA和mB (只要求帮做一下受力分析)

紧挨着并排放在水平桌面上,A、B间的接触面垂直于图中纸面且与水平成θ角.A、B间的接触面是光滑的,但它们与水平桌面间有摩擦,静摩擦系数和滑动摩擦系数均为μ.开始时A、B 都静止,现施一水平推力F于A,要使A、B向右加速运动且A、B间之间不发生相对滑动,则:1.μ的数值应满足什么条件?

2.推力F的最大值不能超过多少?(只考虑平动,不考虑转动问题)

二、质点系牛顿第二定律及质心运动问题

(1)质点系的牛顿第二定律

如果质点系在任意的x方向上所受的合力为Fx,质点系中n各物体在x方

向的加速度分别是a1x、a2x、…、a nx,那么有:

Fx=m1·a1x+m2·a2x+…+m n·a nx

质点系动力学方程不涉及内力,所以在处理一些联结体问题时利用这个方程

往往能带来很大的方便。

(2)质心和质心的运动

①求质心:在某方向上有n个质点m1、m2、…、mn,在此方向上建立坐标系

的x轴,各质点在x轴上的坐标分别为x1、x2、…、xn,则质心在x坐标上

的位置:

x c=m1x1+m2x2+?+m n x n

m1+m2+?+m3

同理可以求得质心的速度:

v c=m1v1+m2v2+?+m n v n

m1+m2+?+m3

质心的加速度:

a c=m1a1+m2a2+?+m n a n

m1+m2+?+m3

②质心动力学方程:F=ma c F 为此方向上质点系所受的合外力。特例,当F=0时,ac=0,vc 不变,意味着质点系整体上做匀速直线运动。而当Vc=0时,意味着质心的位置不变。

例2:一列火车有静止开始在铁路上匀加速直线运动,在前20s内前进了40m.至20s末,最后一节车厢脱钩.若机车的牵引力保持不变,再经过20s,这节车厢停下来.且此时与火车相距84m.求这节车厢质量是原来整列火车质量的几分之几?设运动中车的各部分所受阻力大小不变.

三、非惯性系中的力学问题

1、非惯性系相对惯性系做变速运动的参考系,牛顿运动定律不适用,称为非惯性系。

2、惯性力a

m -=惯F ,其中a 是非惯性系相对惯性系的加速度。 引入惯性力的概念后,牛顿方程在非惯性系中形式上得以成立,有'a F F m =+惯,式中,F 为真实力,惯F 为惯性力,'a 为质点在非惯性系中的加速度,从产生的效果看,惯性力与真实力一样,都可以改变物体的运动状态,即产生加速度。惯性力的方向与非惯性系的加速度的方向相反,惯F 具体形式与非惯性系的运动状态有关。

(1)平动加速系中的惯性力

在平动加速参考系中,o a m -=惯

F ,o a 为非惯性系的加速度。平动非惯性系中,惯性力由非惯性系相对惯性系的加速度及质点的质量决定,与质点的位置及质点相对于非惯性下速度无关。

(2)匀速转动系统中的惯性力——惯性力离心力

在转动参考系中,r m 2F ω=惯

,式中ω为转动系的角速度,r 为物体在转动系中的矢径.

例3:如图所示,长度分别为L 1和L 2的两根不可伸长的轻绳悬挂着质量都是m的两个小球,它们处于静止状态。中间的小球m1受到水平的冲击,瞬间获得水平向右的速度v0,求此时连接m2的绳的拉力T 是多少?

例4:质量为M的光滑圆形滑块平放在桌面上,一根轻绳跨过此滑块后,两端各挂一个物体,物体的质量分别为m1和m2,如图3.2-4所示,绳子跨过桌边竖直向下,所有摩擦均不计。求滑块M加速度。

提示:先分析极小段位移,有△x M=(△x1+△x2)/2

也就是v M=(v1+v2)/2恒成立咯,因为v=△x/△t

那么就也有△v M=(△v1+△v2)/2

加速度也就有a M=(a1+a2)/2 ,因为a=△v/△t

惯性参考系与非惯性参考系

惯性参考系与非惯性参考系 (一)教学目的 1.正确理解惯性参考系的定义 2.正确识别惯性参考系与非惯性参考系 3.正确理解惯性力的概念 4.知道惯性力不是物体间的相互作用 5.会正确运用惯性力计算有关问题 (二)教学过程 ●引入新课 前面我们已经学习了经典力学的基础:牛顿运动定律。请同学们回顾、思考下面几个问题。 问题1:牛顿第一定律的内容是什么? (答:一切物体总保持静止或匀速直线运动状态,直到有外力迫使它改变这种状态为止。) 说明:这条定律正确地说明了力与运动的关系:物体的运动不需要力去维持:力是改变物体运动状态(产生加速度)的原因。 问题2:当你和同伴同时从平台跳下,如各自以自身为参考系,对方做什么运动?(答:对方是静止的。) 问题3:在平直轨道上运动的火车中有一张水平的桌子,桌上有一个小球,如果火车向前加速运动,以火车为参考系,小球做什么运动?(答:小球加速向后运动。) 疑问: 问题2中,既然对方是静止的,按照牛顿第一定律,他不应受到力的作用,然而每个人都的确受到重力的作用。这怎么解释呢? 问题3中,小球加速向后运动,按照牛顿第一定律,小球应受到力的作用,然而小球并没有受到向后的力。这又怎么解释呢? 对这个问题暂时还不能解释,但我们至少能说明一点:并非对一切参考系,牛顿第一定律都成立。 本节课我们就学习关于参考系的知识,板书: § 3.5惯性参考系与非惯性参考系 ●进行新课 我们以牛顿运动定律能否成立来将参考系划分为两类:惯性参考系和非惯性参考系。板书: 一、两种参考系 1.惯性参考系:牛顿运动定律成立的参考系,简称惯性系。 中间空出两行。供后面(1)、(2)两点板书用。 2.非惯性参考系:牛顿运动定律不能成立的参考系。 要判断一个参考系是否为惯性参考系,最根本的方法是根据观察和实验;判断牛顿运动定律在参考系中是否成立。 分析问题2:当你和同伴同时从平台跳下,以地面为参考系,做匀加速运动。由于人受重力作用,所以人做匀加速运动,这是符合牛顿运动定律的。 我们生活在地球上,通常是相对地面参考系来研究物体运动的。伽利略的理想实验以及我们前面做过的研究运动和力的关系的实验,都是以地面作参考系的。在地面上作的许多观察和实验表明:牛顿运动定律对地面参考系是成立的。板书: (1)地面参考系是惯性参考系。 除了地面参考系,牛顿运动定律还对什么参考系成立呢? 分析问题3:如果火车向前作匀速直线运动,以火车为参考系,小球保持静止。小球所受的合外力为零,符合牛顿运动定律。可见:相对于地面作匀速直线运动的参考系,也是惯性参考系。

非惯性系中的功能原理及应用

非惯性系中的功能原理及应用 摘 要: 在理论力学中,关于非惯性参照系中动力学问题,从来未涉及到非惯性系中的功能原理。为此,本文先推证出质点系相对非惯性系的动能定理,再推出质点系相对非惯性系的功能原理及机械能守恒定理,然后再运用此原理解决实际问题。 关键词: 非惯性系;牵连惯性力;科氏惯性力;功能原理;机械能守恒定理 The function of the inertial system principle and application Abstract: In the theory of mechanics,about the dynamics inertia reference in question never involved in noninertial system function and principle.For this reason this paper first inferred, particle system to a relative non-inertial systems of kinetic energy theorem,and then launch the relative particle noninertial system of function and principle, the last to solve practical problems by using the principle. Key words: Noninertial system; Involved the inertial force; Division type inertia force; principle of work and energy; Mechanical energy conservation theorem 0 引言 处理非惯性参考系中的动力学问题有两种方法,一种是在惯性参考系中考虑问题,然后运用相对运动的关系进行两种坐标参考系之间坐标、速度和加速度诸量的转换,化成非惯性系中的结论。另一种方法是研究在非惯性系中适用的动力学基本方程,从而研究非惯性系中的动力学问题。关于关于非惯性系中的动力学问题,在理论力学中只是研究动力学方程。机械能是自然界普遍存在的,在非惯性系中也依然如此。在非惯性系动力学方程的基础上推导出非惯性系中的功能原理及机械能守恒定理。从而,从能量的观点出发去研究非惯性系中的动力学问题。 1 非惯性系的动能定理 平面转动参考系(例如平板)s '以角速度ω 绕垂直与自身的轴转动,在这参考系上取坐标系xy O -它的原点和静止坐标系s 的原点O 重合,并且绕着通过O 并垂直于平板的直线以角速度ω 转动(图1) 。令单位矢量i ,j 固着在平板上的x 轴及y 轴上,并一同 以角速度ω 和平板一起转动。ω 矢量在z 轴上,我们 可以把它写成k ωω=。如果p 为在平板上运动着的 一质点,则p 的位矢为 j y i x r += (1) s ' ω θ η ζ p r k j i y x 图 1

非惯性性系中的真空光速不变性原理

非惯性性系中的真空光速不变性原理真空光速不变包括两层含义,首先在同一参考系中,光速具有各向同性和均匀性;其次,在具有相同的space-time单位的参考系中,光速的数值相同,与参考系相对光源的运动状态无关.描述惯性系的空间是闵可夫斯基空间,其线元形式是dS2=ηab dξa dξb,其中d ξa是闵可夫斯基空间space-time仿射坐标改变元,是全微分量.惯性系之间变换的space-time几何要求是,space-time线元长度在变换中不变,即dS2=ηab dξa dξb=ηab dξ`a dξ`b,其中两惯性系的space-time坐标均是全微分,它体现了两惯性系space-time坐标之间存在1—1映射.对惯性系space-time坐标的物理要求是能描述真空光速不变.在所有惯性系中取相同的space-time单位,即相对静止时的钟和尺是相同的前提下,真空光速不变意味着光速的数值相同,因而惯性系的度规相同,space-time线元的形式完全一样. 现代宇宙学的基础就是广义相对论,所以现代宇宙学的一个基本观念就是真空极限速度只在局部测量是光速,在A测量远处的B点的光速,则完全可以不是A点的光速,这是现代宇宙学的共识.现代宇宙学的另一个共识,就是除了没有物质没有宇宙常数的理论上的假想空间,真实宇宙不存在全局观测者.非惯性系即使有同一的space-time单位,也没有全时间、全空间统一的钟和尺.因此测量光通过非惯性系某space-time点的速度,只能用当地、当时的钟和尺.故测量只能在该点足够小的space-time邻域中进行,否则毫无意义.光速变与不变也只能在这个条件下判断,如果真空光速不变也适用于非惯性系,意味着光传播速度与非惯性系中的space-time点无关,与传播方向无关,与非惯性系相对光源的运动状态无关,而且其数值与惯性系相同.由实验检验真空光速不变原理适用于非惯性系几乎不可能.因为按理论的要求,测量只能在光通过space-time点的无限小的邻域中进行.其次,惯性系运动的状态只有一种,而非惯性系千变万化,即使同一非惯性系的每一个space-time点也不相同,无法通过实验去验证每一种非惯性系的每一个space-time点上的真空光速不变.然而可以依据理论自恰原则给予判断,把真空光速不变原理推广到非惯性系是自然的.详细证明过程请参阅【1】 参考文献: 【1】王仁川著《广义相对论引论》49——57页. 1

惯性系与非惯性系之间的物理规律的有关讨论

目录 摘要 (1) Abstract........................................... 错误!未定义书签。 1 引言 (1) 2 参考系的基本概念透析 (2) 2.1 参考系 (2) 2.2 惯性系和非惯性系 (2) 2.3 非惯性参考系的应用范围 (2) 3 非惯性参考系中的力学研究 (2) 3.1 非惯性参照系与惯性力 (2) 3.2 牛顿水桶实验 (3) 3.3 非惯性参照系与科里奥利惯性力 (4) 3.4 科里奥利加速度的实质 (4) 4 广义相对性原理 (4) 5 非惯性参照系附加引力场 (5) 6 总结 (5) 参考文献 (5)

惯性系与非惯性系之间的物理规律的有关讨论 摘要:汽车开动,人向后仰,刹车时人向前倾,与平稳前进时完全两样,类似的情况还很多。这些现象使人们在动力学中把参照系分为两类:惯性系与非惯性系。在一般问题中,地球可看成是惯性系,匀速直线运动的汽车也是惯性系,正在开动或刹车的汽车是非惯性系。从地球上考察,刹车时人向前倾正符合惯性定律;从汽车上考察,人在水平方向未受力而向前倾,这不符合牛顿定律。为什么牛顿定律不适用于非惯性系?非惯性系中的运动定律是怎样的?本文拟就这些问题做一简单讨论。 关键词:参考系;惯性系;非惯性系;广义相对论 Inertial and non-inertial reference system between the physical laws about discuss Abstract:The car started, people leaned back, when the brake is person to lean forward, and smooth progress completely different, similar case has a lot of. These phenomena so that people in the dynamics in the reference frame is divided into two categories: inertial and non-inertial reference system. In general, the earth can be thought of as the inertial system, uniform linear motion of the car is inertial system, moving or brakes is non inertial system. From the earth expedition, when the brake is in line with the law of inertia people forward; from the car inspection, people in the horizontal direction without force and forward, this does not accord with Newton's laws. Why Newton's law is not applicable to non inertial system? In non-inertial motion law is how? This paper tries to make a simple discussion of these issues. Key words:Reference system; Inertial system; Non inertia system; General relativity 1 引言 对一切运动的描述,都是相对于某个参考系的。参考系选取的不同,对运动的描述,或者说运动方程的形式,也随之不同。人类从经验中发现,总可以找到这样的参考系:其时间是均匀流逝的,空间是均匀和各向同性的;在这样的参考系内,描述运动的方程有着最简单的形式。这样的参考系就是惯性系。而相反的,相对于惯性系(静止或匀速运动的参考系)加速运动的参考系称为非惯性系参考系。地球有自转和公转,我们在地球上所观察到的各种力学现象,实际上是非惯性系中的力学问题,因此,研究惯性系与非惯性系中的各种物理现象、总结其规律对于我们认识世界、改造世界有其重大意义。 2 参考系的基本概念透析

分析力学基础非惯性系中的质点动力学-郑州大学力学

第一章分析力学基础 1-1 试分析图示两个平面机构的自由度数。 1-2 广义力都具有力的量纲吗?广义力与广义坐标有什么联系? 1-3 放置在固定半圆柱面上的相同半径的均质半圆柱体和均质半圆柱薄壳,如图所示。试分析哪一个能稳定地保持在图示位置。 1-4动力学普遍方程中应包括内力的虚功吗? 1-5如研究的系统中有摩擦力,如何应用动力学普遍方程或拉格朗日方程? 1-6 试用拉格朗日方程推导刚体平面运动的运动微分方程。 1-7 推导拉格朗日方程的过程中,哪一步用到了完整约束的条件 ? 第二章非惯性系中的质点动力学 2-1根据非惯性系下的动力学基本方程,小球在变速运动的车厢中自由降落时受有牵连惯性力,飞机在高空飞行时受有科氏惯性力。试分析这两个惯性力的反作用力作用在哪?牛顿第三定律对它们成立吗? 2-2对固结在变速运动的列车上的参考系来说,地面上静平衡的物体并不平衡,而随列车一起运动的物体却是平衡的。试从这一点出发说明惯性力的相对性,并说明惯性力的虚加性与真实性。 2-3在质点相对运动中,下述哪些说法是正确的? (1)若,则必有。 (2)若,则必有。

2-4 某人水平抛出一球,如果考虑科氏惯性力,则在下述情况下,由抛球的人看来,球的路径会偏向不考虑科氏惯性力时路径的右面还是左面?(1)在北半球水平抛出;(2)在南半球水平抛出;(3)在南极和北极水平抛出。 2-5 在惯性系中,质点系的动能为。其中m 为质点系的总质量,为质心速度,为相对于质心坐标系(即以质心为基点的平移坐标系)的动能。称上式为柯尼希定理。试利用柯尼希定理导出质点系相对于质心坐标系的动能定理。 第三章 碰撞 3-1 两球 的质量分别为,开始时不动,以速度撞于。设恢复因数e =1,问在三种情况下,两球碰撞后将如何运动? 3-2 碰撞过程中可以应用冲量矩定理,为什么一般情况下不便于应用动量矩定理的积分形式? 3-3 为什么弹性碰撞时不应用动能定理;当恢复因数e =1时是否可以应用? 3-4 在不同碰撞情况下,恢复因数是如何定义的;在分析碰撞问题中,恢复因数起什么作用? 3-5 击打棒球时,有时震手,有时不感到震手,这是为什么? 3-6 定轴转动刚体上受碰撞力作用,为什么轴承处也会产生碰撞力?如果转轴恰好通过刚体的质心,能否找到撞击中心? 3-7 均质细杆,质量为m ,长为l ,静止放于光滑水平面上。如杆端受有水平并垂直于细杆的碰撞冲量,求碰撞后杆中心的速度和杆的角速度。欲使此杆某一端点碰撞结束瞬时 的速度为零,碰撞冲量应作用于杆的什么位置? 第四章 机械振动基础 4-1 如图所示装置,重物M 可在螺杆上上下滑动,重物的上方 和下方都装有弹簧。问是否可以通过螺帽调节弹簧的压缩量来调节 系统的固有频率? 4-2 如图所示的水平摆和铅垂摆都处于重力场中,杆重不计, 摆长l 、弹簧刚度k 以及摆锤质量m 都是相同的。试问两个摆微幅 摆动的固有频率是否相同?如果二者都脱离了重力场,其固有频率 是否相同?又如图中的弹簧方向都与摆杆垂直,假设弹簧与摆杆成 角连接,其固有频率 有什么不同? '212T mv T C += C v 'T I

功能原理完整版

0 引 言 在物理学中,如何选择适当的参照系是非常重要的,在力学中通常选用惯性系,但有时也可选用非惯性系。功能原理在惯性系中成立,在非惯性系中作适当处理后也成立,有时用它解题很方便。本文就给出这样的例题。关于非惯性系参照系中,在《理论力学》中只是研究动力学方程,缺少的是非惯性系中的功能原理。本文经过推导得出质点系非惯性系的功能原理。 1 功能原理的研究 1.1 质点系的动能定理 质点系也是实际物体的一种理想模型,它可以当作有限个质点组成的一个系统。设一个质点系有N 个质点组成,其中第i 个质点的质量为m i ,第j 个质点作用在m i 上的力(内力)为f ij ,这N 个质点以外的其他物体作用在m i 上的合力(外力)为f i ,则由牛顿运动定律 ()1 1N i i i ij ij j dv m f f dt ==+-∑δ (1-1) 式中i v 是i m 的速度,而 10ij i j i j =?=? ≠?, 当, 当δ (1-2) 当i m 的位移为i dr 时,以i dr 点乘上式便得 ()( ) 212 1 1N i i ij ij i i i j f dr f dr d m v =+-=∑ δ (1-3) 将上式对所有的N 个质点求和,便得 ()21211111N N N N i i ij ij i i i i i j i f dr f dr d m v ====?? +-= ??? ∑∑∑∑ δ (1-4) 令 1 N i i i dA f dr == ∑ 外, (1-5) ()11 1N N ij ij i i j dA f dr ===-∑∑ 内δ, (1-6) 分别代表外力和内力作的功,则(1-4)可写作: 2121N i i i dA dA d m v =?? += ??? ∑外内。 (1-7) 这就是质点系的动能定理。 1.2质点系统的功能原理 质点系的内力可以分为保守内力和非保守内力。例如,质点系内各质点的万有引力是保守内力; 质点间的摩擦力是非保守内力。因而,质点系内力的功A 内可以写成保守内力的功(用符号A 内保 表

怎样在非惯性系中运用牛顿第二定律求解物理问题

怎样在非惯性系中运用牛顿第二定律求解物理问题 新课程物理必修1-1在74页给同学们介绍了惯性系和非惯性系。区分惯性系和非惯性系就在于分清坐标系的加速度是否等于零。如果某个参考系的加速度为零,则该参考系就是惯性系,在惯性系内,对研究对象而言,牛顿定律成立;如果某个参考系的加速度不为零,则该参考系就是非惯性系,在非惯性系内,对研究对象而言,牛顿定律不成立;而如果我们假设研究对象除了受到其它的力以外,还受到一个惯性力()的作用,则在该非惯性系内,对研究对象就可以用牛顿定律进行求解了。下面我们举一个例题进行具体分析。 如图1,一个质量为m 的光滑小球,置于升降机内倾角为θ的斜面上。另一个垂直于斜 面的挡板同小球接触,挡板和斜面对小球的弹力分别为1 N 和2N 。起初,升降机静止,后来,升降机以a 向上加速运 动。试求: 升降机静止和以a 加速运动这两种情况下,挡板和斜 面对小球的弹力分别为多少? 解:方法一:在惯性系中运用牛顿第二定律, 我们首先对小球进行受力分析,如图2,得到: 建立平面直角坐标系,如图2,得到: ma mg N N =-+θθcos sin 21 θθsin cos 21N N = 解,得到: θsin )(1a g m N += θcos )(2a g m N += 方法二: 从另一种角度来说,本题中如果以电梯为参考 系(非惯性参考系),则小球处于静止状态,其受力情况处于 平衡状态。小球的受力情况如图3所示,则(其中,* f 为惯 性力的大小): *21cos sin f mg N N +=+θθ θθsin cos 21N N = ma f =* 解,得到: θsin )(1a g m N +=

非惯性系下力学问题

渤海大学 本科毕业论文 题目非惯性系下力学问题的研究完成人姓名张亚楠 主修专业物理学教育 所在院(系)数理学院物理系入学年度2008年 完成日期2011年6月1日指导教师丁文波

非惯性系下力学问题的探讨 张亚楠渤海大学物理系 摘要:非惯性参照系就是能够对同一个被观测的单元施加作用力的观测参照框架和附加非线性的坐标系的统称。在经典机械力学中,任何一个使得“伽利略相对性原理”失效的参照系都是所谓的“非惯性参照系”。了解非惯性系下的力学问题很重要。对于非惯性系的研究已经从传统的理论已经从传统的理论教学扩展到实际生活应用领域,从宏观研究深入到微观领域。随着生活领域的不断扩大,对非惯性系下的元器件动力学行为,特别是非线性动力学行为的研究还有很大的空间。在直升机转子等航空发动机转子的动力学研究中,应用的也主要是非惯性系动力学的理论知识。近年来通过研究发现,在非惯性系中两体问题、摩擦力、压强以及浮力问题等都得以解决。本文阐述了惯性系和非惯性系的区别,由惯性力着手,把牛顿第二地定律引入到非惯性系中,分析了牛顿第二定律的适用条件,并对非惯性系下的力学问题进行研究。第一部分对非惯性系和惯性系进行概述。第二部分对非惯性系下摩擦力的研究进行了讲述,摩擦力从动于包括惯性力在内的其它力作用。第三部分通过分析在非惯性系中液体内部浮力和压强的变化,阐述了在不同参考系下液体浮力和压强的变化规律。 关键词:非惯性系;摩擦力;压强;浮力

Mechanics Problems in the non-inertial frame Zhang Ya-nan Department of Physics,Bohai University Abstract:Collectively referred to as the coordinate system of the observation frame of reference and additional non-linear non-inertial frame of reference is the ability to exert force on the same observation unit. In classical mechanics, no one makes the "failure of the principle of Galilean relativity" frame of reference is the so-called "non-inertial frame of reference. Mechanical problem is very important to understand the non-inertial frame. For non-inertial frames from the traditional theory has been expanded from the traditional teaching of the theory to real-life applications, from a macro research into micro areas. With the continuous expansion of areas of life, the dynamic behavior of non-inertial frame components, especially the study of nonlinear dynamic behavior there is a lot of space. The study of helicopter rotor aero-engine rotor dynamics, the application of theoretical knowledge of non-inertial frame dynamics. In recent years, the study found that two-body problem in the non-inertial, friction, pressure and buoyancy problems are all resolved. This paper describes the difference between inertial frames and non-inertial frames, to proceed by the inertia force, the introduction of Newton's second law of land to the non-inertial reference frame, Newton's Second Law applies to conditions, mechanical problems and non-inertial frame study. The first part an overview of the non-inertial frames and inertial frames. The

非惯性系中的力学

非惯性系中的力学 牛顿运动定律只适用于惯性系,在非惯性系中,为了能得到形式上与牛顿第二定律一致的动力学方程,就需要引入惯性力的概念. 一.直线加速系中的惯性力 设非惯性参考系的加速度为a 参,物体相对于参考系的加速度为a 相 ,物体实际的加速度为a 绝, 则有: a绝= a参+a相.那么,物体”受到”的惯性力F惯=-m a参,其方向与a参的方向相反. 惯性力是虚构的力,不是真实力,因此,惯性力不是自然界中物体间的相互作用,因此不属于牛顿第 三定律涉及的范围之内,它没有施力物体,不存在与之对应的反作用力. 在非惯性系中,考虑到惯性力后的动力学方程为: 式中, F 合 为物体实际受到的合力. 二,匀速转动系中的惯性力 圆盘以角速度ω绕铅直轴转动,在圆盘上用长为r的轻线将质量为m的小球系于盘心且小不球相对于圆盘静止,即随盘一起作匀速圆周运动.从惯性系观察,小球在线拉力T的作用一下作圆周运动,符合牛顿第二定律.以圆盘为参考系,小球受到拉力T的作用,却保持静止,没有加速度,不符合牛顿第二定律.所以,相对于惯性系作匀速转动的参考系也是非惯性系,要在这种参考系中保持牛顿第二定律 形式不变,在质点静止于此参考系的情况下,应引入惯性力:F 惯 =mω2r.这个力叫做惯性离心力.若质点静止于匀速转动的参考系中,则作用于此物体所有相互作用力与惯性离心力的合力等于零,即: 例1.在火车车厢内有一长l,倾角为的斜面,当车厢以恒定加速度a0从静止开始运动时,物体自倾角为θ的斜面顶部A点由静止开始下滑,已知斜面的静摩因数为μ,求物体滑至斜面底部B点时,物体相对于车厢的速度,并讨论当a0与μ一定时,倾角θ为多大时,物体可静止于A点? 例2.如图所示,定滑轮A的一侧持有m1=5kg的物体,另一侧挂有轻滑轮B,滑轮B两侧挂着民m2=3kg,m3=2kg的物体,求每个物体的加速度。

惯性坐标系与非惯性坐标系

惯性坐标系与非惯性坐标系 相对于惯性系作加速运动的参考系就是非惯性系。在非惯性系中,牛顿运动定律不能适用的。惯性系:相对于地球静止或作匀速直线运动的物体。 非惯性系:相对地面惯性系做加速运动的物体。 平动加速系:相对于惯性系作变速直线运动,但是本身没有转动的物体。例如:在平直轨道上加速运动的火车。 转动参考系:相对惯性系转动的物体。例如:转盘在水平面匀速转动。 关于牛顿力学有关惯性系的概念,爱因斯坦有这样的批评:“古典力学想要说明一个物体不受外力,必须证明它是惯性的,想要说明一个物体是惯性的,有必须证明它不受外力。”从而犯了逻辑循环的错误。 上面讲话的意思是,古典力学要想知道一个物体的受力状态,就要预先知道它的运动状态,而要想知道一个物体的运动状态,就必须预先知道其受力状态,但由于古典力学无法预先确定两者中的任何一个,另一个也就同样无法确定。 不过,这个批评很明显地不符合事实,因为这段话的前半部分虽然还看不出有什么错误,牛顿正是由于行星绕太阳的非惯性运动,才判定各行星受到力的作用的,但后半段则是完全不顾事实的,在谈论这个问题时应以事实为根据。科学的历史告诉我们,在牛顿力学问世以前,人类早已对太阳系内各大天体的运动状态有了基本了解,并建立了哥白尼系统的宇宙图形。人们取得如此的成就依靠的并不是力学定律和力学实验,而是长期的天文观测数据。人们是在对太阳系内各天体的运动状态已有了基本了解后才找到牛顿的力学定律的。所以“古典力学对天体运动状态的了解要取决于对天体受力状态的了解”这个论断是完全违背事实的。 当然,牛顿力学的建立使人们对天体的运动规律有比较以前更为深刻的理解,但无论如何,天文观测的数据总是第一位的,而不是开普勒三定律和牛顿定律创造了这些数据。牛顿力学问世后,曾有人利用力学计算的方法预计了海王星的存在,似乎是先知道力学定律,然后才知道星体运动的。但是不能忘记,这些计算方法所依据的原理是从已知星体运动归路总结出来的,所以总的来说,人们是先知道天体的受力状态的。牛顿力学问世后,人们有时也利用力学实验的办法作为研究天体运动的一种补充手段,例如用在地球表面上的柯氏力的办法来证地球存在自转,但这只是地球自转的许多证据的一种,它不能给出地球轨道要数的全部数据,至于其它行星如何运行,就更不能采用这个方法了。 太阳系内各行星的轨道要数是老早确定了的,人们不仅已经了解了这些行星的瞬时速度,而且了解它们的瞬时加速度,所以并不存在辨别这些行星是不是惯性系的困难,人们老早就知道它们是非惯性系,知道它们的经向和横向加速度,甚至水星近日点每100年约43"的额外进动量也已精确地测出。 因此,牛顿力学并不存在判断天体是否惯性系的困难或犯了逻辑循环的错误。 相对论者一再强调古典力学无法了解天体运动状态,目的显然是为了否定绝对时空观念及其有力支柱哥白尼系统。但他本人却又常提起哥白尼系统,应用哥白尼系统来解决实际问题,岂非自相矛盾。 也许相对论者会提出疑问,既然太阳也绕银河系中心转动,而银河系也不是不动的,难道仅仅根据太阳系内各天体的运动状态就可以判断其惯性的好坏? 前文已经说明,运动的绝对性是有相对运动的不等价性来体现的。太阳系的质心(采用严格性差一点的习惯用语,可以简单点说太阳)和各行星运动状态的差别是:太阳只有绕银心转动的牵连加速度,而各行星不仅有简练加速度,而且有相对太阳运动的相对加速度,所以考虑太阳在银河系内的运动,太阳依然惯性最好。

惯性力与非惯性系

惯性力与非惯性系 摘要 惯性力是非惯性系中的非真实力,本文证明了在非惯性系中将惯性力视为真实力计入后,惯性系下的所有力学规律在非惯性系下都能成立。当惯性力做功与路径无关时,可以引入惯性力势能,引入惯性力势能并计入系统总机械能后,机械能守恒体系中的条件与结论也仍然成立。 关键字:非惯性系; 惯性力; 惯性力势能 ABSTRACT Inertia force is unreal power in non-inertia system. It proves in this article that when inertia force is added as real power in non-inertia system, all the mechanical laws which apply in inertia system also do in non-inertial system. When inertia force’s doing work has nothing to do with path, potential energy can be brought in. The conditions and conclusions still apply in the system of conservation of mechanical energy when it adds potential energy to the total mechanical energy. Keywords:Non-inertial; Inertia; Inertial force potential energy 1非惯性系与惯性力 我们在描绘物体的运动状态时,称选作参照场的物体或物体群,为参照系。又因为牛顿第一定律又称为惯性定律。所以凡适用用牛顿定律的参照系都可以称作惯性参

非惯性系中的机械能守恒定律

非惯性系中的机械能守恒定律 专业:物理学 姓名:魏清坤 指导老师:韩峰 【摘要】推导非惯性系中的机械能守恒定理。指出机械能守恒定律在某些非惯性系中仍然适应,在非惯性系中应用机械能守恒定律可以简便地解决一些力学问题。 【关键词】非惯性系;惯性力;惯性力势能;机械能守恒定律 引言 机械能守恒定律是从牛顿运动定律中推导出来的。由于牛顿定律仅适应于惯性系,而在一些非惯性系中机械能守恒也适应,而且选取非惯性系可以使问题简单化。在非惯性系中引入惯性力,牛顿定律可以沿用,那么机械能守恒定律是否也可以沿用,用表达式又如何表示?本文将导出非惯性系中的机械能定理,引入惯性势能概念,给出非惯性系中机械能守恒定律的表达形式。 1材料与方法 非惯性系中的机械能定理 1.1非惯性系中的单一质点的动能定理 牛顿定理是在惯性系中适应的,在非惯性系中不适应。为了方便解决一些力学问题,我们扩大了牛顿定律的适应范围,使之在非惯性系中也适应,这就引入了惯性力的概念,我们认为在非惯性系中除了有真实的相互作用的力F 外,还受到惯性力惯F 的作用。一非惯性系相对于某一惯性系的加速度为0a ,则惯性力为: 惯F =- m 0a (1) 其中的m 为物体的质量,符号表示方向,与0a 的方向相反。这时牛顿第二定律在非惯性系中就可以表示为: F +惯F =- m a (2) 上式中的F 为质点所受的合力,a 为质点相对于非惯性系的加速度。设质点在F 和惯F 的作用下,相对于惯性系有一位移元d r =v dt,其中v 是质点相对于非惯性

系的速度,dt 是产生这一位移所需的时间。用d r 点乘(2)式的两边得: (F +惯F )?d r = m a ?d r = m t d v d ?d r = m v ?d v = d(2 1m 2v ) 即 dA + dA 惯= d(2 1m 2v ) (3) 其中dA=F ?d r ,dA 惯=惯F ?d r 分别是合外力F 和惯性力惯F 对质点作的元功。 对(3)式两边积分得: A + A 惯= 21mV 21- 2 1mV 22= E k - E 0k (4) (4)式即为非惯性系中单一质点的动能定理,这表明在非惯性系中动能定理只是比惯性系多了一项惯性力所做的功。 1.2非惯性系中的质点组的动能定理 质点组就是由相互作用的质点组成的系统。设质点组有n 个质点组成,在某一运动过程中,作用在各个质点的合力的功和惯性力的功记为A i 和A i 惯(i=1,2,3...n), 根据(4)式,每个质点的动能定理: A i + A i 惯 = E ki - E 0ki (i=1,2,3...n) (5) (5)式求和得: ∑=n i A 1i +∑=n i A 1惯i =ki n i E ∑=1-0 1ki n i E ∑==E k -E 0k (6) (6)式为非惯性系中质点组的动能定理。与惯性系中质点组的动能定理相比仅多了惯性力的功。 1.3非惯性系中的机械能守恒 在惯性系中,质点组的机械能守恒定理为: ∑外i A +∑非保内A =(E k +p E )-)(00p k E E + (7) 当∑外i A 和∑非保内A 为零时,E k 和p E 的和为恒量 对于非惯性系,如果∑外i A 和∑非保内A 为零,则可得:

非惯性系中的动力学专题

3.2非惯性系中的动力学 【基本知识】 一、联接体问题 在力的作用下一起运动的两个或两个以上的物体,叫做联结体。解有关联结体的问题一般要用到隔离法,适当辅以整体法。联结体总是相联系的两个或多个物体,这种联系既表现在力上,也表现在运动上。力的联系往往会与一些临界情况相结合,运动的联系同样视具体的情况有所不同,可能表现为位移、速度或加速度的某种关系等,这种联系也可以称之为约束。因此,解联结体问题就是寻找约束,然后建立方程。 例如,如果两物以绳、杆相连接,那么沿绳或杆方向的速度相同。如果两个物体直接接触,那么它们在垂直接触面(或切面)方向的速度相同。有些联结体中各物体具有不同的加速度,可以通过它们的受力或运动关系来确定它们的加速度的关系。 例题1:如图所示,两个木块A和B,质量分别为mA和mB,质量分别为mA和mB (只要求帮做一下受力分析) 紧挨着并排放在水平桌面上,A、B间的接触面垂直于图中纸面且与水平成θ角.A、B间的接触面是光滑的,但它们与水平桌面间有摩擦,静摩擦系数和滑动摩擦系数均为μ.开始时A、B 都静止,现施一水平推力F于A,要使A、B向右加速运动且A、B间之间不发生相对滑动,则:1.μ的数值应满足什么条件? 2.推力F的最大值不能超过多少?(只考虑平动,不考虑转动问题)

二、质点系牛顿第二定律及质心运动问题 (1)质点系的牛顿第二定律 如果质点系在任意的x方向上所受的合力为Fx,质点系中n各物体在x方 向的加速度分别是a1x、a2x、…、a nx,那么有: Fx=m1·a1x+m2·a2x+…+m n·a nx 质点系动力学方程不涉及内力,所以在处理一些联结体问题时利用这个方程 往往能带来很大的方便。 (2)质心和质心的运动 ①求质心:在某方向上有n个质点m1、m2、…、mn,在此方向上建立坐标系 的x轴,各质点在x轴上的坐标分别为x1、x2、…、xn,则质心在x坐标上 的位置: x c=m1x1+m2x2+?+m n x n m1+m2+?+m3 同理可以求得质心的速度: v c=m1v1+m2v2+?+m n v n m1+m2+?+m3 质心的加速度: a c=m1a1+m2a2+?+m n a n m1+m2+?+m3 ②质心动力学方程:F=ma c F 为此方向上质点系所受的合外力。特例,当F=0时,ac=0,vc 不变,意味着质点系整体上做匀速直线运动。而当Vc=0时,意味着质心的位置不变。 例2:一列火车有静止开始在铁路上匀加速直线运动,在前20s内前进了40m.至20s末,最后一节车厢脱钩.若机车的牵引力保持不变,再经过20s,这节车厢停下来.且此时与火车相距84m.求这节车厢质量是原来整列火车质量的几分之几?设运动中车的各部分所受阻力大小不变.

非惯性系中的

非惯性系中的“弹簧双振子模型” 浙江省海盐元济高级中学(314300) 王建峰 魏俊枭 一、“弹簧双振子模型”的含义 如图一所示,质量分别为m A 和m B 的两物块A 和B ,A 、B 可视为质点,用一根劲度系数为k 的轻质弹簧连接起来,放在光滑水平面上,弹簧原长为0l 。可以将A 、B 和弹簧组成的系统装置称为“弹簧双振子模型”。 该模型在近几年的全国中学生物理竞赛中屡屡出现,从反馈情况来看失分是相当严重的。究其原因它不但涉及力与运动、动量与能量等物理知识,而且物理过程复杂、运动情景难以想象,对学生分析、解决问题的能力提出了较高的要求。因此,帮助学生认清该模型的特点,掌握分析该模型的一般方法,并能够适当地变式处理此类问题,无疑对参加全国中学物理竞赛有很大的帮助。 二、非惯性系中的“弹簧双振子模型” 牛顿运动定律不成立的参照系称为非惯性系。非惯性系相对惯性系必然做加速运动或旋转运动。为了使牛顿运动定律在非惯性中也能使用,可人为地引入一个惯性力。如果非惯性系相对惯性系有平动加速度a ,那么只要认为非惯性系中的所有物体都受到一个大小为ma 、方向与a 的方向相反的惯性力,牛顿运动定律即可成立。如果非惯性系相对惯性系有转动加速度,也可引进惯性离心力和科里奥利力,这两个力不仅与非惯性系的转动角速度有关,还与研究对象的位置和运动速度有关,在此对转动情况不作讨论。下面就“弹簧双振子模型”在非惯性系(只有平动加速度)中的运动规律作一些简单探讨。 [情景]:如图二所示,在一个劲度系数为 k 的轻质弹簧(两端绝缘)分别拴着荷质比为A A m q 与荷质比为B B m q 的两个带正电的小球,且 A A m q =B B m q ,系统置于光滑水 平面,处在水平的匀强电场中,电场强度为E ,A 端用细线拴住,系统处于静止状态,此时弹簧长度为l ,弹簧原长0l 。 现将细线烧断,试确定A 、B 在任意时刻的所处位置。(A 、B 两球的相互作用力忽略不计) [解析]:①以质心为参考系(质心系),则质心C 是静止的,连接A 、B 的弹簧仍可以看成两断,左边一段原长为0 1 l m m m l B A B AO += ,劲度系数为k m m m B A B +;右边一段原长为0 1 l m m m l B A A BO += ,劲度系数为 k m m m A A B +;振动周期都是) (2B A B A m m k m m T +=π 。 对B 球有 ()B Eq l l k =-0 ②以地面为参考系,建立如图二所示的坐标系,即以A为坐标原点,向右为正方向。质心做匀加速运动,加速度B A B A m m q q E a ++= )(,在t = 0 时刻,即细线刚烧断时刻,A 位于Ox 轴的原点O 处,即()0 0= A x ; B 的坐标 ()l x B =0。质心的坐标为 ()l m m m x B A B C += 0,在细线烧断以后,任意时刻t 质心的位置 2 2 )(2 12 1)0()(t m m q q E l m m m at x t x B A B A B A B C C +++ += + = ③在非惯性参考系中,A 、B 还受惯性力作用,建立如图二所示的坐标系,即以质心o 1为坐标原点, (图一)

惯性系的定义

牛顿第一、第二定律(见牛顿运动定律)在其中有效的参照系,简称惯性系。如果s为一惯性参照系,则任何对于s作等速直线运动的参照系都是惯性参照系;而对于s作加速运动的参照系则是非惯性参照系。所有的惯性参照系都是等效的。惯性参照系即惯性系 惯性系的定义 对一切运动的描述,都是相对于某个参考系的。参考系选取的不同,对运动的描述,或者说运动方程的形式,也随之不同。人类从经验中发现,总可以找到这样的参考系:其时间是均匀流逝的,空间是均匀和各向同性的;在这样的参考系内,描述运动的方程有着最简单的形式。这样的参考系就是惯性系。 朗道《场论》(主要是相对论电动力学)给出的定义牛顿第一定律成立的参照系叫做惯性系。(原文没有用牛顿第一定律,而是直接说在这样的参照系中,一个不受相互作用的粒子将保持静止或匀速直线运动)。这个定义在牛顿力学和狭义相对论中均适用。 这样1)牛顿第一定律定义了惯性系 2)牛顿力学在惯性系中成立。(在相对论中,第二条只要修正为麦可斯韦方程组和相对论力学在其中成立即可) 这样就不存在逻辑循环的问题,同时也可以说明,牛顿第一定律不是牛顿第二定律在F=0时的特殊情况。 编辑本段惯性系判定 一个参考系是不是惯性系,只能由试验确定。最基本的判据就是牛顿运动定律成立与否。根据伽利略相对性原理,和一个惯性系保持相对静止或相对匀速直线运动状态的参考系也是惯性系。在实践中,人们总是根据实际需要选取近似的惯性参考系。比如,在研究地面上物体小范围内的运动时,地球是一个很好的惯性系。在研究太阳系中天体的运动时,太阳是一个很好的惯性系。 .非惯性系:相对地面惯性系做加速运动的物体.平动加速系:相对于惯性系作变速直线运动,但是本身没有转动的物体.例如:在平直轨道上加速 运动的火车.转动参考系:相对惯性系转动的物体.例如:转盘在水平面匀速转动. 编辑本段相对论的质疑 关于牛顿力学有关惯性系的概念,爱因斯坦有这样的批评:“经典力学想要说明一个物体不受外力,必须证明它是惯性的,想要说明一个物体是惯性的,又必须证明它不受外力。”从而犯了逻辑循环的错误。

相关主题
文本预览
相关文档 最新文档