当前位置:文档之家› 吊弦计算

吊弦计算

吊弦计算

吊弦计算

吊弦计算公式

吊弦计算公式 吊弦长度(承力索与接触线中心间距):)()(1022013mm h h h h h h a R R V +++-= 其中:1h 直线无拉出值,两端结构高度为1H 、2H 、预留弛度为0F 时的吊弦长度。 )();() ();()/()/()()(0005.0) ((m);m L (m) (m);m )()() )((2))((1500 215002)(/)(/)(8)()()) 2(42(2)(100W 121212110002201211m H l kgf V kgf T kgf T 。 m kg ;q m kg q m ,;R m L F m m H x 。 a a m H H x L a a a h 。 h D x L D x T R T T h 。 h D x L D x h RT T h R x L x h 。 h D L x l TL x L Vl h l x D TL l L Vx h 。 V h T D q D x L D x D L F T T T T q T D L qD x L H H H h j j a a j R R W j W R R V V V j j j 端距离集中荷重至集中荷重接触线额定张力承力索额定张力接触线单位自重接触悬挂单位自重为负为正竖曲线半径跨中预留弛度曲线外轨超高跨距线路的曲线半径悬挂点的距离吊弦距两定位点的拉出值、;两定位点的结构高度、式中符号的意义:响拉出值对吊弦长度的影的增加量竖曲线引起的吊弦长度弦长度的增加量曲线外轨超高引起的吊如果如果增加量所产生的承力索弛度的集中荷重???=-- =---+=---??+?-=-≤<-=≤≤-=---?-?-?+-----+= 补充说明:1、直链型悬挂中,拉出值对吊弦长度的影响一般不计算。 2、曲线外轨超高对吊弦长度的影响为:承力索张力不但没减小反而增大,吊弦应相应加长。 3、注意各参数的单位。 4、跨中预留弛度按设计要求值计算,一般为0.0003~0.0007。

晶面间距计算公式

晶面间距计算公式 正交晶系 1/d2=h2/a2+k2/b2+l2/c2 单斜晶系 1/d2={h2/a2+k2sin2β/b2+l2/c2-2hlcosβ/(ac)}/ sin2β 立方晶系 d=a/(h2+k2+l2) 六角晶系 四角晶系 单斜晶系

三斜晶系 If Φ is the angle between plane (h 1 k 1 l 1) and (h 2 k 2 l 2), then for Orthorhombic 2 /12 2222222 22 /12 212 212 2 1221221221)()()(cos ??? ? ??++??? ? ??++++= Φc l b k a h c l b k a h c l l b k k a h h Tetragonal []() 2 /12 2 2222 22 2 /12 21221 21 2 212212 1))/)(cos ??? ? ??++???? ??++++= Φc l a k h c l a k h c l l a k k h h Cubic

()()[] 2 /122 2222 21 21 21 212121cos l k h l k h l l k k h h ++++++= Φ Hexagonal ()() 2 /12222222 222212211212121221221212143434 321 cos ? ????????? ??+++???? ? ?++++++ += Φl c a k h k h l c a k h k h l l c a K h k h k k h h VOLUME: Orthorhombic: =abc Tetragonal: =c a 2 Cubic: =3a Hexagonal: = c a 2 2 3 hcp transition between (UVW) and (uvtw) U=u-t, V=v-t, W=w u=1/3(2U-V), v=1/3(2V-U), t= - (u+v), w=W.

接触网常用计算公式

接触网常用计算公式 1. 平均温度t p 和链形悬挂无弛度温度t o 的计算 ① 2t t tp min max += ② 5-2t t t min max o +=弹 ③ 10-2 t t t min max o +=简 式中 t p —平均温度℃(即吊弦、定位处于无偏移状态的温度); t o 弹、t o 简—分别表示弹性链形悬挂和简单链形悬挂的无弛度温度℃; t max —设计最高温度℃; t min —设计最低度℃; 2. 当量跨距计算公式 ∑∑=== n i I n i I L L LD 1 13 式中L D —锚段当量跨距(m ); ).........(3 3 23 113 n n i I L L L L +++=∑=—锚段中各跨距立方之和; ).........(211 n n i I L L L L +++=∑=—锚段中各跨距之和; 3. 定位肩架高度B 的计算公式 2)101 +( h d h I e H B + +≈ 式中 B —肩架高度(mm ); H —定位点处接触线高度(mm ); e —支持器有效高度(mm ); I —定位器有效长度(包括绝缘子)(mm ); d —定位点处轨距(mm );

h —定位点外轨超高(mm ); 4. 接触线拉出值a 地的计算公式 h d H a a - =地 式中 a 地—拉出值标准时,导线垂直投影与线路中心线的距离(mm )。a 地为正时导线的垂直投影应在线路的超高侧,a 地为负时导线的垂直投影应在线路的低轨侧。 H —定位点接触线的高度(mm ); a —导线设计拉出值(mm ); h —外轨超高(mm ); d —轨距(mm ); 5. 接触线定位拉出值变化量max a ?的计算公式 2 max 2 max E I I a z z -- =? 式中 Δa max —定位点拉出值的最大变化量(mm ); Z L —定位装置(受温度影响)偏转的有效长度(mm ); max E —极限温度时定位器的最大偏移值(mm ); 由上式可知 E=0时 Δa=0 6. 定位器无偏移时拉出值a 15的确定:(取平均温度t p =15℃) max 2115a a a ?± = 式中 a —导线设计拉出值(mm ); Δa max —定位点拉出值的最大变化量(mm ); 15 a —定位器无偏移时(即平均温度时)的拉出值(mm )。a 15与a 的变化关系,主 要取决于定位器在极限温度时Δa max 的变化量的大小,当Δa max 变化量较大时,则a 15相对a 值的变化较大,当Δa max 变化量较小 时,则a 15相对a 值变化量较小。但Δa max 的变化量又取决于定位器在极限温度时E max 值的大小,当定位器在极限温度时偏移值较大时,则Δa max 变化也较大,则a 15≠a ,反之偏移值较小时,则Δa max 变化也较小,则a 15≈a 。所以确定平均温度时定位点拉出值a 15的目的是为了满足在极限温度时,拉出值不超过允许误差。除直线反定位以外,当温度高于或低于平均温度时,拉出值都将是增大。因此,调整a 15时应满足下列关系为好:

晶面间距及晶包参数计算公式

空间点阵必可选择3个不相平行的连结相邻两个点阵点的单位矢量a,b,c,它们将点阵划分成并置的平行六面体单位,称为晶面间距。空间点阵按照确定的平行六面体单位连线划分,获得一套直线网格,称为空间格子或晶格。点阵和晶格是分别用几何的点和线反映晶体结构的周期性,它们具有同样的意义。 1概述 空间点阵必可选择3个不相平行的连结相邻两个点阵点的单位矢量a,b,c,它们将点阵划分成并置的平行六面体单位,称为晶面间距。空间点阵按照确定的平行六面体单位连线划分,获得一套直线网格,称为空间格子或晶格。点阵和晶格是分别用几何的点和线反映晶体结构的周期性,它们具有同样的意义。 2 计算 不同的{hkl}晶面(标准卡片可读出hkl为衍射指数),其面间距(即相邻的两个平行晶面之间的距离)各不相同。总的来说,低指数的晶 面其面间距较大,而高指数面的面间距小。以图1-22所示的简单立 方点阵为例,可看到其{100}面的晶面间距最大,{120}面的间距较小,而{320}面的间距就更小。但是,如果分析一下体心立方或面心立方 点阵,则它们的最大晶面间距的面分别为{110}或{111}而不是{100},说明此面还与点阵类型有关。此外还可证明,晶面间距最大的面总是阵点(或原子)最密排的晶面,晶面间距越小则晶面上的阵点排列就越

稀疏。正是由于不同晶面和晶向上的原子排列情况不同,使晶体表现为各向异性。 简单立方点阵晶面间距d与点阵常数之间的关系: 。 面心立方晶体(FCC)晶面间距与点阵常数a之间的关系: 若h、k、l 均为奇数,则 ;否则, 。 体心立方晶体(BCC)晶面间距与点阵常数a之间的关系: 若h+k+l=偶数,则 ;否则,

接触网常用参数标准及测量计算

接触网常用参数标准及测量计算 一、拉出值(跨中偏移值) 1、技术标准 160km/h及以下区段: 标准值:直线区段200-300mm;曲线区段根据曲线半径不同在0-350mm之间选用。 安全值:之字值≤400mm;拉出值≤450mm。 限界值:之字值450mm;拉出值450mm。 160km/h以上区段: 标准值:设计值。 安全值:设计值±30mm。 限界值:同安全值。 2、测量方法 利用DJJ多功能激光接触网检测仪进行拉出值测量:受电弓滑板平面与两钢轨平面平行,检测仪与两钢轨平面平行,测量时无需考虑外轨超高,直接校准定位点在检测仪上的投影位置,此位置与检测仪中心点的距离就是拉出值。 二、导线高度 1、技术标准 标准值:区段的设计采用值。 安全值:标准值±100mm。 限界值:小于6500mm;任何情况下不低于该区段允许的

最低值。 当隧道间距不大于1000m时,隧道内、外的接触线可取同一高度。 2、测量方法 利用DJJ多功能激光接触网检测仪进行导高测量:将测量仪置于两钢轨之上与两轨面平行,利用测量仪上的观察窗校准定位点位置,测出定位点至两轨面的垂直距离即为导高。 三、导线坡度及坡变率 1、技术标准 标准值: 120km/h及以下区段≤3‰;120-160km/h区段≤2‰;200km/h区段≤2‰,坡度变化率不大于1‰;200-250km/h区段≤1‰,坡度变化率不大于1‰。 安全值:120km/h及以下区段≤5‰;120-160km/h区段≤4‰。其他同标准值。 限界值:120km/h及以下区段≤8‰;120-200km/h区段≤5‰;200km/h及以上区段同安全值。 160km/h及以上区段,定位点两侧第一根吊弦处接触线高度应相等,相对该定位点的接触线高度允许误差±10mm,但不得出现V字型。 2、测量与计算方法 定位点A与定位点B之间的坡度测量:1、测出A点的

整体吊弦预制

整体吊弦预制一、施工准备 1、施工准备 ①领取预制计算单。

②依据计算单领取当日加工材料,并对其进行外观质量检查。 ③检查制作工具及检测工具。 2、穿线 ①从线盘拉出一定长度的吊弦线,将线头散股部分用弧型断线钳剪掉。 ②将吊弦线绳穿入压接管,再将线头回头从压接管穿出,穿另一压接管,并回头后穿回(如图)。 ③在第二个压接管的吊弦绳回头内套入套环。 ④将穿入压接管与镶入套环的线头一端拉紧,同时将压接管上推,使吊弦线与套环圆弧密贴。回头线从套环中心到线头长度为275mm。 ⑤用上述3、4方法,按计算长度减承力索、接触线线夹长度调整到位。留出275mm回头,剪断吊弦线。 3、精调吊弦长度 ①可先将一头压接。 另一头挂在滑动的柱上拉直。

③长度与计算尺寸相等,可进行下一步骤压接。如偏差过大应调整,再重复测,直到达到精度要求。 4、压接 ①用德方提供的压接钳压制压接管。 ②将线鼻子套入线头,用德方提供的压接钳,压接好线鼻子。 5、复核检查 对压接好的成品吊弦应进行复核检查,总长度超过1.5mm视为不合格品,应另加工。 6、挂标签 将吊弦顺号标签捆绑在吊弦压接环上。 7、包装 ①一跨吊弦扎一捆,扎时应理顺,用Φ1.6不锈钢丝最少扎两道(两端),在绑扎线上标上跨距支柱号。 ②一个锚段扎一大捆,标上区间锚段号。然后按站、区分装,并予以标识。 8、结束 负责人填写预制记录。 四、技术标准 1、THJ铜绞线无散股、断股等现象,截面尺寸符合设计要求。 2、零配件表面光滑无毛刺,各部尺寸符合设计要求。 3、两端回头揻制方向相反。 4、吊弦长度偏差为1.5mm。 5、两套环应在同一平面内。 6、两端线鼻子的弯曲方向相反。 7、吊弦标签应标明××锚段××#--××#第×根吊弦。 五、注意事项 1、不合格产品严禁使用。 2、试验段应将承、导吊弦线夹连在一起进行精度复测,以保证其精度(平台上固定钢筋

接触网整体吊弦制作安装工法

电气化铁路接触网整体吊弦制作安装工法 铁道部电气化工程局 一、前言 当前,我国电气化铁路正处在一个新的发展时期,对如何进一步提高电气化可靠性的问题,铁道部领导和有关司、局都十分重视,而且全路呼声很高,反映强烈。为此,我局首先在京郑线电气化接触网工程中推出整体吊弦新技术。 整体吊弦是以往接触悬挂中环接吊弦的替代产品。它由青铜绞线、C型线夹、J型线夹组成,见图1,采用整体式压接工艺连接,具有机械强度高、耐腐蚀性能好、使用寿命长、施工安装方便及改善接触网运行状态等优点。 为保证该项新技术的实施,1993年10月我们在宝中线进行试验,取得了较好的效果,经再次完善和修改后,1994年10月,在京郑线官庄-邢台间再次组织了现场示范演示,取得成功,从而为京郑线全线采用该项新技术提供了技术保证,也为今后进行高速电气化铁路施工奠定了基础。 二、工法特点 1.有利于“弓网”关系的改善和机车运行速度的提高,为高速电气化铁路施工做好技术储备。 2.避免了接触导线的反复调整,减少了施工占用线路的时间,缩短了接触网施工建设的周期,缓解了施工与运输的矛盾,经济效益显著。 3.有利于提高工程质量和设备可靠性,减少维修工作量。 4.把部分室外网上工作变为工厂化预制生产,改善了操作者的工作环境,提高工作效率。

三、适用范围 本工法适用于铁路、矿山、地下铁道的电气化以及城市无轨电车所采用的各种链形悬挂形式架空接触网施工。 四、施工工艺 (一)工艺原理

整体中弦的长度是不可调的,全部工艺必须整体配套。吊弦长度的精度控制和支持装置一次到位,是工艺的基础。超额定张力提前拉伸,是为了将线索自然延伸量消除在施工过程中,使线索在运营时处于良好的状态。本工法有承力索和接触线的超拉工序,它和接触悬挂一次成型工艺构成了本工法的核心技术。 (二)工艺流程(见图2)

接触网计算题

1.在半补偿简单链形悬挂区段,采用G J-70+T C G-100,最高气温为+40℃,最低气温为一20℃,吊弦离中心锚结900m.a j=1.7x l0-5/℃,计算温度为40℃时吊弦偏移值。 解:由tp=(tmax+ tmin)/2,得tp=10℃,由E=Laj(tX - tp),得E=459mm。 答:向下锚偏459 mm. 2.在半补偿弹性链形悬挂区段,采用G J-70+T C G-85,最高气温为+40℃,最低气温为-20,吊弦离中心锚结600m,a j=1.7x l0-5/℃,计算温度为30℃时吊弦偏移值。 解:由tp=(tmax+ tmin)/2,得tp=10℃,由E=Laj(tX - tp),得E=204 mm。 答:向下锚偏204mm。 3.在半补偿简单链形悬挂区段,采用G J-70+G L C B85/173,最高气温为+40℃,最低气,为-20℃,某悬挂点离中心锚结500m. a j=1.7x l0-5/℃,计算温度为一10℃腕臂相对支柱中心的偏移值。解:由tp=(tmax+ tmin)/2,得tp=10℃,由E=Laj(tX - tp),得E=-170 mm。 答:向中锚偏170 mm。 4.在半补偿简单链形悬挂区段,采用G J-70+T C G-100,最高气温为+40℃,最低气温-20℃,某悬挂点离中心锚结800m.a j=1.7x l0-5/℃,计算温度为40℃时定位器相对中心的偏移值。 解:由tp=(tmax+ tmin)/2,得tp=10℃,由E=Laj(tX - tp),,得E=408

mm。 答:,向下锚偏408 mm。 5.在半补偿弹性链形悬挂区段,采用G J-70+T C G-110,最高气温为+40℃,最低气温-20℃,吊弦离中心锚结800m,a j=1.7x l0-5/℃,计算温度为40℃时吊弦偏移。 解:由tp=(tmax+ tmin)/2,得tp=10℃,由E=Laj(tX - tp),得E=-408 mm。 答:向中锚偏408 mm。 6.在某电气化铁路区段,采用全补偿简单链形悬挂,计算跨距L为35m,K=4时的吊弦间距。 解:由X0=(L一2e)/(K-1),得Xo=9 m(注意e=4)答:吊弦间距为9m。 7.在某电气化铁路区段,采用全补偿简单链形悬挂,计算跨距L为45m.,K=5时的吊弦间距。 解:由Xo=(L-2e)/(K-1),得Xo=9. 25 m(注意e=4)答:吊弦间距为9.25 m。 8.在某电气化铁路区段,采用半补偿简单链形悬挂,计算跨距L为55m.,K=6时的吊弦间距。 解:由Xo=(L一2e)/(K-1),得Xo=9.4 m(注意e=4)答:吊弦间距为9.4 m 9.在某电气化铁路区段,采用半补偿简单链形悬挂,计算跨距L为65m.,K=7时的吊弦间距。

整体吊弦

整体吊弦 在常速电气化铁路接触悬挂上,一般采用环节吊弦,通过长期运行实践证明,用渡锌铁线制作的环节吊弦,普遍存在着安装精度差,接触线高度需经常调整,在有电分段处如绝缘锚断关节,因吊弦分流而烧断吊弦的事故。在高速电气化铁路接触悬挂结构上,对导线高度要求十分严格,即各悬挂点导线高度必须等高,其相对误差越小越好,吊弦要有较高的可靠性,并能在大电流系统中,具有一定的导电性能,为使我国高速接触悬挂安装水平与国际水平接近,目前已在京郑线和广深线上普遍采用整体吊弦。 整体吊弦采用铜合金铰线或不锈钢,两端通过压接方式与吊弦线夹连接,其最大拉伸工作荷重不得小于1KN,与承力索、接触线间的滑动荷重不得小于1.0KN,吊弦综合拉断力不小于4.0KN。 整体吊弦具有如下特点: 1、采用整体导流式吊弦结构 由于吊弦与线夹间为压接连接工艺,机械强度高,在电气上具有不间断性,可承受一定的电流,避免了环节吊弦产生的磨损和电火花烧伤等情况。 2.耐腐蚀,寿命长,适用机械化加工制作,有利于批量生产。 3、经过精确计算后,一次性安装不需调整,减轻了维修工作量。 为了保证整体吊弦的安装要求,应从设计、施工与维修等方面考虑。首先在设计上,要合理控制锚段长度,提高补偿器的传动效率,减少坠砣串重量误差,在高速铁路区段,一般采用铸铁坠砣,避免因

混凝土坠砣吸湿性而带来误差,要合理选配腕臂,水平拉杆等支撑结构,保证导线高度满足技术要求。在维修和施工中,要提高腕臂、水平拉杆的预配精度。目前,已有专门软件,在计算机上对腕臂、水平拉杆等结构尺寸进行精确计算。 要改善测量手段,提高测量和安装精度,特别是悬挂点两侧吊弦的位置,应准确测量,避免安装后人为调整,维修中应注意与工务部门配合,随时监视工务维修动向,保证高速区段导线高度误差不超过20mm.。

接触网常用计算公式

附件一、接触网常用计算公式: 1.平均温度t p和链形悬挂无弛度温度t o的计算 t max+t min ①t p= 2 t max+t min ②t o弹= -5 2 t max+t min ③t o简= -10 2 式中t p—平均温度℃(即吊弦、定位处于无偏移状态的温度); t o弹、t o简—分别表示弹性链形悬挂和简单链形悬挂的无弛度温度℃; t max—设计最高温度℃; t min—设计最低温度℃; 2.当量跨距计算公式 n ∑L I3 LD= i=1 n ∑L I √i=1 式中L D—锚段当量跨距(m); n ∑L I3=(L13+ L23+……+ L n3)—锚段中各跨距立方之和; i=1 n ∑L I=(L1+ L2+……+ L n)—锚段中各跨距之和; i=1 3.定位肩架高度B的计算公式 B≈H+e+I(h/d+1/10)h/2 式中B—肩架高度(mm); H—定位点处接触线高度(mm); e—支持器有效高度(mm);

I—定位器有效长度(包括绝缘子)(mm); d—定位点处轨距(mm); h—定位点外轨超高(mm); 4.接触线拉出值a地的计算公式 H a地=a-h d 式中a地—拉出值标准时,导线垂直投影与线路中心线的距离(mm)。a地为正时导线的垂直投影应在线路的超高侧,a地为负时导线的垂直投影应在线路的低轨侧。 H—定位点接触线的高度(mm); a—导线设计拉出值(mm); h—外轨超高(mm); d—轨距(mm); 5.接触线定位拉出值变化量Δa max的计算公式 Δa max=I z-√I2z-E2max 式中Δa max—定位点拉出值的最大变化量(mm); I z—定位装置(受温度影响)偏转的有效长度(mm); E max—极限温度时定位器的最大偏移值(mm); 由上式可知E=0时Δa=0 6.定位器无偏移时拉出值a15的确定:(取平均温度t p=15℃) a15=a±1/2Δa max 式中a—导线设计拉出值(mm); Δa max—定位点拉出值的最大变化量(mm);

整体吊弦利旧说明

整体吊弦利旧说明 自2006年8月开始,为迎接铁道部对京哈线“4.18”提速调图作准备,接触网的硬点整治成为了提速过程中的重点工作,而在硬点整治过程中,主要是对导线高度不合格的处所进行调整。我工区管内正线全部采用压接式载流整体吊弦,所以,对导高的调整难度非常大,所需要的可调式整体吊弦数量很多。为了保证提速工作的顺利完成,使管内设备达到提速技术要求,同时,为了节省材料费用,在多次的吊弦更换中,经过反复试验,总结出利用旧吊弦进行简单改造,使之成为可调式整体吊弦的方案,并在工区内部试验使用,效果明显。 一.吊弦介绍: 目前,在电气化铁道接触网中应用的吊弦主要有两种:一是环节吊弦。环节吊弦是用直径4mm镀锌制作而成,为了保证吊弦的弹性,每根环节吊弦不少于2节。环节吊弦制作简单,价格便宜,安装、调整方便,但是环节吊弦存在安装精度差、稳定性差、不能载流、耐腐蚀性差等缺点,目前环节吊弦主要应用于低速电气化铁路区段及各站场侧线接触悬挂中。 二是整体吊弦。随着电气化铁路不断发展,高速电气化铁路对吊弦的性能及安装精度要求越来越高,这就使整体吊弦越来越多的应用于高速电气化铁路中。整体吊弦主要有机械强度高、耐腐蚀、寿命长,有整体的倒流结构具有较高的载流能力,安装后

不需要经常调整,维修工作量小。 整体吊弦主要压接式整体吊弦(图一)和可调式整体吊弦(图二)两种。 二.利旧方案: 我工区管内区间及站场正线全部为压接式整体吊弦,由于在施工过程中安装尺寸误差较大,而且经过多次大机线路整治,使导线高差成为制约提速调图的主要因素。在提速调图前的硬点整治中,由于导线高差不符合技术要求,需要将大批的压接式整体吊弦尺寸进行调整,这样,更换下来了一批压接式整体吊弦。 旧吊弦更换下来后,为了使旧吊弦能够应用于硬点整治中,我们想了各种办法。先是将换下来的旧吊弦长度测量并编号,在尺寸合适的位置将它们安装上。试验了几次后,发现尺寸能够完全合适的位置很少,而且需要提前调查计算,由于测量的数据存在误差,调查后的数据只能进行参考,安装后也不能够完全合适,都需要进行少量的调整。 通过对段下发的可调式整体吊弦与压接式整体吊弦的比较,发现两者的主要区别是可调式整体吊弦用可调螺栓代替了压接式整体吊弦承力索吊弦线夹下方的压接管,使吊弦尾线可以通过可调螺栓窜动,达到调整吊弦长度的目的。这样,我就想如果将压接式整体吊弦的压接管拆除,然后安装上可调螺栓,这样不就将压接式整体吊弦变成可调式整体吊弦了吗? 有了这个想法,我们试着拆除压接式整体吊弦的压接管。在

整体吊弦长度计算

整体吊弦长度计算 按全补偿简单链型悬挂时,且假设接触线自重负载通 1、原始测量数据 悬挂点承力索到2条钢轨内缘的距离为A ,B ;支柱间的跨距为L ,曲线外轨超高为h w 。 2、数据处理 (1)承力索对线路中心的水平偏移距离为a ' a '=(B 2-A 2)/2×1435 (2)承力索对轨面的垂直距离H 1' H1'= A 2- (1435/2-a ')2 (3)该悬挂点处承力索的结构高度h h= H1'- H (H 为设计导高)。 3、计算公式 (1)直线段: -1000[gX(L-X)/2T c ]+[h 1+(h 2-h 1)X/L] ① (2)曲线修正值 [X(L-X)h w +T j /T c * h w (X-D)(L-X-D)]/(3R) ② (3)竖曲线修正值 1000(T c +T j )* (X-D)(L-X-D)/(2R 0T C ) ③ (4)预留弛度修正值 4F 0(X-D)(L-X-D)/(L-2D)2 ④ 4、直线段吊弦长度计算公式C(之字布置) C= [①+④]2+[a 1+(a 1-a 2)X/L]]2 +③

5、圆曲线段吊弦长度计算公式C= ①+②+③+④ 6、缓和曲线吊弦长度计算公式C (1)A柱在直线,B柱在缓和曲线,a均为正值 C= [①+④]2+[a- aX/L]2 +③ (2)A柱在缓和曲线,B柱在直线 C= [①+④]2+[aX/L]2 +③ 7、有集中荷载时吊弦长度修正值hv -VX(L-l)/(TL) (D≤X≤l) hv= - -Vl(L-l)/(TL) (l≤X≤l-D) 本文中各个变量的含义: C:吊弦长度(mm) h1:支柱1的结构高度(mm) h2:支柱2的结构高度(mm) g:单位悬挂自重(kg/m) X:吊弦到支柱1的距离(m) L:支柱1到支柱2的实际跨距长度(m) T C:承力索的额定张力(kg) T j:接触线的额定张力(kg) h w1:支柱1处外轨超高(mm) h w2:支柱2处外轨超高(mm) h w:吊弦处外轨超高(mm) h w= h w1+(h w2- h w1)X/L R:曲线半径(m) R0:竖曲线半径(m) 竖曲线“”时为正,反之为负。D:第一根吊弦距悬挂点的距离(m) F0:跨中预留驰度(mm) a1、a2:接触悬挂两端对承力索的之字值(mm) V:集中荷载重量(kg) l: 集中荷载距离支柱1的距离(m) 预留驰度的计算:Y=a(X-D)2+b(X-D) 式中:a=-4F0/(L-2D)2;b=4F0/(L-2D)。

整体吊弦

BHF-A10-4A-0166B(G) 刚性整体吊弦 参TB/T2075.7-2009 人员说明及要求:所有执行本产品安装、调试、及维护的人员必须具有以下所述的资格和经验: 1、已经详细阅读本说明书下述的内容。 2、按照图纸或以图纸的相关要求为基础工作。 3、避免伤害及安全规则。 4、调试方法和调试步骤。 5、急救知识请参阅有关规范。 一、产品用途及说明 1、用途:本零件用于电气化铁道接触网系统全补偿简单链型悬挂中在承力索上悬吊接触线的整体吊弦及在接触悬挂中的吊弦线夹。适用于分别悬吊标称截面为85mm 2、110mm2、120mm2、150mm2的铜合金接触线或110mm2、85mm2的铜接触线。 二、产品安装示意图 产品示意图及现场安装图片如下(线路具体安装形式选用以施工安装图为准):

三、机械性能 1、整体吊弦的拉伸荷重为不小于1.47kN。 2、整体吊弦与接触线和承力索之间的滑动荷重不小于0.98kN。 3、接触线吊弦线夹弯矩荷重为24.5N。 4、整体吊弦及吊弦线夹的最大垂直工作荷重为1.3kN。 5、吊弦线夹的垂直破坏荷重不小于3.9kN。 6、吊弦线拉断力的不小于5.67kN。 7、接触线吊弦线夹与接触线间的滑动荷重不小于1.0kN。 8、承力索吊弦线夹与承力索间的滑动荷重不小于1.0kN。 9、压接后,吊弦线与压接管间的滑动荷重不小于3.9kN。 四、安装方法 1、根据安装示意图或装配图材料表检查零部件是否齐全;检查零件是否有影响使用 的质量缺陷或变形;线夹本体型号与线型规格是否一致;紧固件之间的配合是否灵活。 2、出厂前按照规定测尺寸将吊弦的压接加工完成。 3、根据现场的实际安装高度,结合使用吊弦弯曲设备弯曲吊弦。弯曲设备的使用方 法详见吊弦弯曲设备使用说明书。 3、从承力索上方,将吊弦沿着开口旋转,套在承力索上。 4、将保护套的尼龙套A、B片套在承力索上同时让吊弦套在尼龙套上,用开口销锁 紧。 5、将螺栓松开,把螺纹夹板和螺孔夹板的牙型嵌入接触线的沟槽内摆正,用7毫米 六方扳手拧紧特殊螺栓,再用扭矩扳手紧固达到34 N.m。 6、套上背母,用手指将跟母拧到拧不动为止,再用扳手拧1/4~1/3圈。 五、注意事项 1、保证各连接部位牢固可靠。 2、紧固过程应防止咬扣、发热。

有砟轨道区段接触网吊弦测量计算分析

DOI:10.19587/j.cnki.l007-936x.2018.02.011 有砟轨道区段接勉网吊弦测量计算分析 赵东波接触网有砟轨道区段接触网吊弦测量计算分析 赵东波 摘要:电气化铁路有砟轨道的铺设精调滞后于接触网上部结构安装施工,在接触网上部结构施工前轨道不能 达到设计标准,待线路精调完成后,接触线实际髙度不能满足验收标准,致使接触网后期调整工作量较大。本 文通过建立数字参数模型,在有砟轨道线路精调不到位的情况下对接触网吊弦进行测量和计算,并以瑞九铁路 试验段为例进行应用分析,应用效果较好。 关键词:有砟轨道区段;吊弦;计算分析 Abstract:The accurate adjustment of laid ballast tracks of electrified railways is relative lagged behind fhe construction of OCS superstructure in terms of construction schedule nodes.Alter accurate adjustment of track,the constructed OCS superstructure may not satisfy fhe design standard,with fhe actual contact wire height unsatisfied wifh fhe acceptance requirements and fhat will increase the works for post adjiistment of OCS.With tiie first piece of w ork in Ruichang-Jiujiang railway,accurate dropper length is calculated accurately when the works of b allast txadc are not fully completed,and the experumoat shows that the calculation has better application effects. Key words:Ballast track;drover;calculation and analysis 中图分类号:U225.4+8 文献标识码:B 文章编号:1007-936X (2018) 02-0045-02 〇引言 2017年,我国铁路实施大规模提速改造,设 计时速200?250 k m高速铁路建设中,线路多为有 碎道床,与设计时速300?350 k m线路标准相同,接触网悬挂髙度调整标准要求较高,其吊弦采用整 体不可调吊弦,吊弦计算是接触网施工中非常重要 的一个环节。 随着电气化铁路的发展及四电工程施工一次 到位工艺理念的逐渐深入,目前接触网专业的各种 计算软件相对比较成熟,但各计算软件的原始数据 采集输入均主要依据钢轨面不发生变化情况下直 接测量所得数据,因此在轨面各种参数没有到位的 情况下,现场测量的数据需要在软件计算前换算成 相对钢轨达到设计要求下的数据。另外,影响吊弦 计算精度的因素较多,主要有线路参数、腕臂偏斜、拉出值、承力索的实际髙度等。线路参数可通过设 计相关参数获得,腕臂偏斜通过严格要求工艺标准 得到解决,拉出值通过交粧资料一般相对准确,而 承力索的实际高度在钢轨不到位时测量计算比较 困难繁琐,对吊弦的计算精度影响也较大,本文将 作为重点进行分析。 作者筒介:赵东波.中铁电气化局集团有限公司上海电气化 工程分公司,工程师。1有砟轨道区段接触网吊弦计算分析 1.1模型参数 有砟轨道区段链形悬挂吊弦计算参数采集的 模型是基于设计轨面髙程、现场实测现有轨面至承 力索髙度、实测轨距、实测超髙、c p m成果髙程 等参数、数据通过相似三角形等原理转换为正常软 件计算需求的数据,即计算出设计轨面至承力索的 髙度(承力索实际髙度)。 承力索实际髙度=实测承力索髙度-c p m 粧标髙与实测轨面标髙高差+c p m粧高程与设计 轨面髙程高差(图1)。其中,c p m粧髙程、设 计轨面髙程由站前交粧取得,为海拔高度。 图1承力索实际高度计算模型 45

接触网吊弦安装施工作业指导书

接触网吊弦安装施工作业指导书 1 适用范围 适用于新建1铁路接触网吊弦安装施工。 2 作业准备 (1)施工准备 ①人员组织 序号项目单位数量备注 1 施工负责人人 1 全面负责 2 作业人员人 4 测量、安装各2人 3 司机人 2 正、副司机各1人 4 防护人 3 车站1人、现场2人 5 导高复测人 2 1人测量、1人记录 ②工、机具 序号名称规格或型号单位数量备注 1 作业车台 1 2 作业凳0.9米台 1 自制 4 力矩扳手套 2 人均1套 5 钢卷尺15m/3m 把各1 6 粉笔支若干 7 毛刷把 1 8 安全带套 2 作业人员人均1顶 9 安全帽顶9 作业人员人均1套 10 防护用品套 3 11 电工工具套 5 12 线坠个 1 13 激光测量仪台 1

③主要材料、设备 序号名称规格或型号单位数量备注 1 吊弦线夹 (承、导) 按施工表套若干 与锚段相 匹配 2 吊弦按施工表根若干与锚段相匹配 3 U型销钉按施工表个若干 4 无酸锂基润 滑脂 kg 若干 (2)测量吊弦安装位置,安装吊弦 ①测量人员带测量工具下车,按计算表,开始测量吊弦安装位置,用粉笔在钢轨上作出标志,或采取沿着导线测量的方法。 ②作业车对位,升作业台,作业车上安装人员扶起作业登,上凳系好安全带,一人将需安装的吊弦传递给安装人员 ③施工负责人用线坠对准钢轨上的安装位置,反引到承力索上,安装人员配合,并标记安装位置,先安装承力索上的吊弦线夹,再安装接触线上的吊弦线夹,承力索上的吊弦线夹安装图见下图: ④先用刷子清楚掉承力索、接触线安装吊弦线夹部位的灰尘和氧化物层,并在安装位置涂一层电力复合脂。 ⑤拆开吊弦线夹,先将吊弦线夹的线夹(6)固定在承力索上,将吊弦穿过吊弦心形环(4),将六角螺栓(8)穿过线鼻子(1)及防松垫片的孔,把吊环(7)行车方向

接触网计算公式

接触网计算公式 3 2接触网上部悬挂的载荷 3 2 1负载分析 接触网上部悬挂结构受到的主要外载荷包括:接触线和承力索在风作用下的风负载F风、以及接触线和承力索在覆冰作用下的冰负载Ft、接触线作用下的之字力P、地面对支柱的支持力F冰、受电弓作用下的抬升力N和其自身的重力Q。 由于接触网外部悬挂结构多种多样,但每一种结构的分析方法都大同小异。本文选择一种典型的接触网上部悬挂结构作为研究对象,进行分析计算,即直线段中间支柱反定位悬挂形式。其示意图如下 其中F风=Pc+Pj,F冰.合成在Qo中 以兰新线武威南至嘉峪关段直线段中间柱反安装为例,取侧面界限Cx=3.1m,安装角a=45°。 标准典型气象区选Ⅳ区,最大风度Vb=lOm/s,覆冰厚度b=5mm,吊弦单位长度自重取g。=0.5×l03 KN/m,跨距取l =65m,拉出值a=200 mm。 承力索和接舷线的相关参数如表3.1。 表3.1 承力索和接触线的参数 接触线长度65m,考虑弛度的影响,承力索实际长度为 L=l+8F/3l 计算得到承力索实际长度l=65. 02m。 (1)单位长度风负载 P =0.615akv2d×106(kN/m) 式中p——绳索所受的实际风负载: a——风速不均匀系数; k——风负载体型系数; d——绳索的直径。 代入数据计算得到: 单位长度承力索风负载:P cb=1.494×10-3(KN/m) 单位长发接触线风负载:P jb=1.494×10-3 (KN/m) (2)单位长度冰负载 g b=πr b b(b+ d)g H l0-9 (KN/m) 式中g b——绳索的覆冰重力负载 b——覆冰厚度;

吊弦计算

吊弦安装计算 一、执行接触网计算软件进入软件主菜单,选定“吊弦安装计算” 栏,根据现场实际情况完成基本数据库、原始数据库数据输入。 二、字段说明 1)悬挂类型——承导线型号 2)导线高——导线高度 3)悬挂单位自重——悬挂的每米质量(包括吊弦重、承力索和导线重) 4)接触线单位自重——接触线的每米质量 5)承力索额定张力——承力索设计的额定补偿张力 6)接触线额定张力——接触线设计的额定补偿张力 7)预留驰度率——接触线的预留驰度值 8)吊弦线夹扣料值——承力索的顶面与导线的底面至吊弦环两端的长度之和 9)跨距下限——吊弦布置数量相同的跨距范围的最小值(包括该值) 10)跨距上限——吊弦布置数量相同的跨距范围的最大值(不包括该值) 11)吊弦根数——分布在该跨距范围内吊弦的总数量 12)未知间距数——该跨距范围内吊弦间距未确定的数量

13)左1——该跨距内左支柱悬挂点至第一根吊弦的间距 14)1-2——第一根吊弦至第二根吊弦的间距 15)2-3——第二根吊弦至第三根吊弦的间距 16)3-4、4-5、5-6、6-7、7-8、8-9、9-10——各间距类推17)10-右——第十根吊弦至右支柱悬挂点的间距 18)跨距特征——该跨距内线路特征(集中负荷、曲线、竖曲线)19)承力索偏移值——承力索相对导线的偏移值 20)曲线半径——该跨距所在范围内的线路曲线半径 21)集中负荷——该跨距内集中负荷的重量 22)竖曲线半径——该跨距内的竖曲线半径 23)承力索高度——悬挂点处承力索相对于轨面中心的高度24)曲外超高——悬挂点处曲线的外轨超高 25)集中负荷至左端距离——集中负荷中心至左悬挂点的距离26)吊弦1~10——吊弦从左到右的编号 27)吊弦位置——吊弦至左侧支柱的距离 28)吊弦长度——吊弦加吊弦线夹的长度和 29)实际下料——吊弦实际有效长度,不含回头长度 30)预留驰度——导线的设计预留驰度 三、计算步骤: 1)核对吊弦常用数据库、吊弦分布数据库是否正确。 2)所有输入或修改的数据必须保存后方可退出。 3)进入原始数据输入窗口。依次输入车站名、跨距特征及各项

接触网吊弦检修作业标准

接触网吊弦检修作业标准 一、适用范围 本标准规定了接触网吊弦的检修周期、质量标准、准备工作、检修步骤、处理方法、注意事项、附件等内容。适用于朔黄铁路原平分公司接触网吊弦的检修。 二、编制依据 《接触网安全工作规程》和《接触网运行检修规程》铁运[2007]69号文、铁道部经济规划研究院铁路工程施工技术指南TZ10208-2008、朔黄铁路发展有限责任公司企业标准。 三、准备工作 1.安全防护:计划申报、工作票签发与审核、预想会、停电作业、作业结束等工作及安全措施,执行朔黄铁路《接触网停电作业标准》;“V”型天窗作业时注意与相邻带电线路距离,并做好行车防护防护。 2.人员组织:操作人员2人。作业监护、行车防护、接挂地线、地面辅助人员由工作领导人在单次作业中进行安排。 3.工机具:作业车(梯车)、绝缘测杆(激光测量仪)、钢卷尺、温度计、滑轮组、接触线正面器、钢丝套子、力矩扳手、个人工具、安全用具、防护用具等。 4.材料:定位线夹、吊弦线夹、整体吊弦、φ4.0mm铁线、

φ1.6mm绑线、黄油等。 5.资料:接触网平面布置图、相应的当量跨距、承力索有载曲线表、接触线弛度曲线表。 四、质量标准 1.吊弦分环节吊弦和整体吊弦两种。其技术状态应符合下列要求: (1)吊弦的长度要能适应在极限温度范围内接触线的伸缩和弛度的变化,否则应采用滑动吊弦。 (2)环节吊弦:至少应由两节组成,每节的长度以不超过600mm为宜,吊弦回头应均匀迂回,长度为150~180mm。环节吊弦两端环孔形状为水滴形,吊弦环直径应为其线径的5~10倍。吊弦磨耗的面积不得超过原面积的50%。环孔收口处缠绕两圈半。每节吊弦两端的环孔应呈互相垂直状。 (3)整体吊弦:有不可调和可调两种形式吊弦预制长度应与计算长度相等,误差应不大于±2mm。吊弦不得有散股、断股、硬变等缺陷,截面损耗不得超过20%。 2.吊弦高差 标准值:相邻吊弦高差≤10mm。(设有预留驰度区段,相邻吊弦高差应为设计值高差,误差≤10mm);安全值:相邻吊弦高差≤50mm。 3.吊弦偏移 吊弦线夹在直线处应保持铅垂状态,曲线处应与接触线

整体吊弦安装

技术交底记录

整体吊弦安装技术交底 安装前的准备 (1)承力索、接触线已经架设完成。 (2)补偿装置工作正常。 (3)承力索归位已完成,腕臂偏移符合当天环境温度变化安装曲线表。吊弦安装 (1)合福全线采用不可调整体吊弦,吊弦线夹分为120型承力索吊弦线夹(正 线)和95型承力索吊弦线夹(站线);承力索吊弦线夹均带有螺纹卡子。 (2)吊弦位置测量:跨距测量根据吊弦预配表上的数据,将跨距进行测量, 测量时必须用钢卷尺,不得用皮尺或数轨枕的方式。并保证吊弦安装间 距偏差控制在50mm以内,出现偏差应在跨中均匀布置。特别注意:吊 弦位置测量应坚持与吊弦安装同步,同时为防止误差建议吊弦点标在承 力索或接触线上。禁止出现钢轨上标识吊弦位置时是一个温度,吊弦安 装时是在另一个温度。 (3)在进行吊弦安装时,要确定锚段、支柱号是否正确,保证吊弦安装在相 应的跨内,同时要根据吊弦编号依次安装,不得将吊弦编号弄乱,这样 安装上就会有吊弦不受力的现象。吊弦安装时,在吊弦线夹安装位置要 用细砂子打磨,并涂电力复合脂。 (4)需要安装绝缘护套处的整体吊弦,为了避免安装绝缘护套后导高发生变 化影响吊弦长度,预制整体吊弦时一端未进行压接,现场绝缘护套安装 完成导高精调完成后,由现场施工人员进行压接。 (5)吊弦线夹的力矩为25N.m,在安装时要用力矩扳手进行紧固。载流环方 向:接触线端载流环方向与行车方向一致(见下图),上行统一在合肥方 向,下行统一在福州方向。(上下行的确认方法:面对合肥方向左手侧为 上行,右手侧为下行)载流环角度在接触线端上斜45o,在承力索侧为 下斜45o。承力索端吊弦载流环和接触线相反。 (6)接触线吊弦线夹螺栓穿向:直线上由线路侧穿向田野侧,曲线上由曲线 外侧穿向曲线内侧(穿向低轨侧)。承力索吊弦线夹螺栓穿向和接触线穿 向相反。

相关主题
文本预览
相关文档 最新文档