高中物理竞赛万有引力天体的运动知识点讲解
- 格式:doc
- 大小:320.08 KB
- 文档页数:10
⾼中物理:天体运动和万有引⼒知识点总结⼀、应⽤万有引⼒定律解题的⼀般⽅法
⼆、常见题型和处理⽅法
(⼀)万有引⼒与重⼒
(⼆)天体质量和密度的求法(两条基本思路的应⽤)
(三)⼈造卫星轨道问题
2.同步卫星轨道和周期特点
(1)周期⼀定
(2)运⾏⽅向⼀定
(3)⾓速度⼀定
(4)轨道⾼度固定不变
(5)向⼼加速度⼀定
(6)环绕速率⼀定
(7)轨道平⾯⼀定
(四)变轨问题
(1)当v增⼤时,所需向⼼⼒增⼤,卫星将做离⼼运动,脱离原来的圆轨道,轨道半径变⼤,但
卫星⼀旦进⼊新的轨道运⾏,与原轨道相⽐运⾏速度要减⼩,但重⼒势能、机械能均增加.(2)当v减⼩时,所需向⼼⼒减⼩,卫星将做近⼼运动,同样会脱离原来的圆轨道,轨道半径变
⼩,但卫星⼀旦进⼊新的轨道运⾏,与原轨道相⽐运⾏速度将增⼤,但重⼒势能、机械能均减⼩.
(五)双星问题
(六)天体的追及问题
距最远时满⾜两星运⾏的⾓度差等于π的奇数倍.在处理有关地球表⾯⾚道上物体的追及问题
时,要根据地球上物体与同步卫星⾓速度相同的特点进⾏判断.
▍来源:综合⽹络。
物理总复习:万有引力定律在天体运动中的应用考点一、应用万有引力定律分析天体的运动1、基本方法把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供.公式为 2222224(2)Mm v F G m m r mr m f r r r Tπωπ===== 解决问题时可根据情况选择公式分析、计算。
2、黄金代换式 2GM gR =要点诠释:在地球表面的物体所受重力和地球对该物体的万有引力差别很小,在一般讨论和计算时,可以认为2Mm G mg R=,且有2GM gR =。
在应用万有引力定律分析天体运动问题时,常把天体的运动近似看成是做匀速圆周运动,其所需要的向心力由万有引力提供,我们便可以应用变换式2GM gR =来分析讨论天体的运动。
如分析第一宇宙速度:22Mm v G m r r =,v == ,r R =,代入后得v =【典型例题】类型一、比较分析卫星运行的轨道参量问题例1、(2015 重庆卷)宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象。
若飞船质量为,距地面高度为,地球质量为,半径为,引力常量为,则飞船所在处的重力加速度大小为 A. 0 B. 2GM R h +() C. 2GMm R h +() D. 2GM h【解析】对飞船受力分析知,所受到的万有引力提供匀速圆周运动的向心力,等于飞船所在位置的重力,即2()Mm G mg R h =+,可得飞船的重力加速度为2GM g R h =+(),故选B 。
【变式1】(多选)现有两颗绕地球匀速圆周运动的人造地球卫星A 和B ,它们的轨道半径分别为A r 和B r 。
如果A B r r <,则 ( ) A. 卫星A 的运动周期比卫星B 的运动周期大B. 卫星A 的线速度比卫星B 的线速度大C. 卫星A 的角速度比卫星B 的角速度大D. 卫星A 的加速度比卫星B 的加速度大【答案】BCDm h M R G【解析】由222()Mm G m r r T π=得234r T GMπ=, 轨道半径 r 越大,T 越大。
天体运动和万有引力总结天体运动总结1. 开普勒三定律所有绕太阳运动的行星轨道都是椭圆,太阳在椭圆的一个焦点上(后简化为所有轨道都是圆,太阳在圆心上),注意:第一定律只是描述了一个图像,并没有需要计算的东西,而且太阳究竟在哪个焦点上还得看第二定律对于某一颗行星来说,它的扫面速度是恒定的。
这句话也可以说成是:离太阳越近,速度越大。
这是判断近日点远日点的根据。
第二定律有个计算是研究近日点远日点速度与到太阳距离关系的。
根据扫面速度相同就有这样的关系 a b v a v b =对于所有绕太阳运动的行星来说,轨道半长轴的三次方与周期的平方的比值都一样32a k T= 简化之后为:所有绕太阳运动的行星,其轨道半径的三次方与周期的平方的比值都一样32r k T = 这里需要注意的是,这些天体所围绕的“中心天体”必须为同一个天体,这个定律可以在后面的推导中证明。
2. 万有引力万有引力公式只要是两个有质量的物体,两者之间必定有万有引力的作用,公式为:122m m F Gr= 记住:G 为引力常量,是由“卡文迪许”通过“扭秤实验”得来的,其目的就是为了测出地球质量。
这里要记住两个和地球有关的常数:质量6×1024kg ,半径6400km 。
m 1,m 2是这两个物体的质量r 为两个物体质心之间的距离,对于两个质点来说就是之间的距离。
而对于形状规则、质量均匀的几何体来说,质心就在几何中心。
关于万有引力公式需要说明几点:A. 万有引力公式是本章的基础,对于一个天体来说,它的运动状态就是由万有引力定律来支配B. 万有引力公式最常见的错误就是把公式写成12m m F Gr=,把r 的平方给丢掉这是一个致命的错误,将会直接导致后面计算错误。
C. 万有引力的方向肯定在两物体之间的连线上而指向对方D. 甲对乙的引力和乙对甲的引力是一对作用力反作用力万有引力的规律从公式上来看,当两个物体质量一定时,万有引力随着距离的增大而减小,并且和距离的“平方”成反比。
千里之行,始于足下。
高中物理必修二万有引力与宇宙航行知识点总结归纳完整版引力与宇宙航行是高中物理必修2的重要内容之一,涉及到引力定律、行星运动、卫星运动、宇宙探索等知识点。
在学习这些内容时,我们需要掌握以下几个重点知识。
第一,引力定律。
牛顿引力定律是描述两个物体之间相互作用的力的大小与方向的关系。
它的数学表达式为F=G*m1*m2/r^2,其中F表示两物体之间的引力,m1和m2分别表示两物体的质量,r表示两物体之间的距离,G为万有引力常量。
第二,行星运动。
行星围绕太阳运动的规律可以利用开普勒定律来描述。
开普勒第一定律,也称作椭圆轨道定律,指出行星绕太阳的轨道是一个椭圆。
开普勒第二定律,也称作面积速度定律,指出行星在同一时间内扫过的面积相等。
开普勒第三定律,也称作调和定律,指出行星公转周期的平方与半长轴的立方成正比。
第三,卫星运动。
卫星围绕地球运动的规律也可以利用开普勒定律来描述。
卫星的轨道一般为近似圆形,其运动速度与高度成正比。
卫星的速度分为正轨道速度和逃逸速度两种,前者用于保持卫星绕地球做圆周运动,后者用于使卫星摆脱地球引力束缚。
第四,宇宙探索。
人类对宇宙的探索主要依靠航天器和火箭。
卫星是用于研究地球和宇宙的重要工具,包括地球观测卫星、太阳观测卫星、星际探测器等。
火箭是宇宙运载工具,可以将航天器送入太空。
火箭原理是利用燃料的燃烧产生大量的气体推动火箭飞行,同时利用牛顿第三定律。
第1页/共2页锲而不舍,金石可镂。
除了上述知识点,我们还需要掌握一些相关的数学计算方法。
例如,通过引力定律计算两物体之间的引力大小;通过开普勒定律计算行星公转周期等等。
在学习过程中,我们还需要注意一些常见的误区。
例如,引力是所有物体之间都存在的,而不仅仅是行星或卫星之间;行星绕太阳运动的轨道并非完全是椭圆,而是近似椭圆等。
通过对引力与宇宙航行的学习,我们可以更加深入地了解宇宙的构成和演化过程,为未来的宇宙探索提供基础知识和理论支撑。
高中物理天体知识点在高中物理中,天体知识是一个重要且有趣的部分。
它不仅能帮助我们理解宇宙的奥秘,还在考试中占据着一定的比重。
下面,咱们就来详细聊聊高中物理中的天体知识点。
首先,咱们得了解万有引力定律。
这可是天体知识的核心基石。
万有引力定律指出,任何两个质点都存在通过其连心线方向上的相互吸引的力,该引力大小与它们质量的乘积成正比、与它们距离的平方成反比,公式表示为:F = G (m1 m2) / r²,其中 F 是两个物体之间的引力,G 是万有引力常量,m1 和 m2 分别是两个物体的质量,r 是两个物体质心的距离。
基于万有引力定律,我们可以推导出很多重要的天体运动公式和结论。
比如,对于绕中心天体做匀速圆周运动的天体,其向心力由万有引力提供。
假设中心天体质量为 M,环绕天体质量为 m,环绕天体的轨道半径为 r,线速度为 v,角速度为ω,周期为 T ,则有:向心力 F 向= m v²/ r ,又因为 F 向= F 引,所以可得 v =√(GM / r) 。
角速度ω = v / r =√(GM / r³) 。
周期 T =2πr / v =2π√(r³/ GM) 。
知道了这些公式,我们就能解决很多关于天体运动的问题啦。
再来看看天体的轨道。
天体的轨道通常可以分为椭圆、圆形等。
在高中阶段,我们重点研究的是圆形轨道。
对于圆形轨道,天体的速度大小是恒定的,但方向不断变化。
而且,轨道半径越大,天体的线速度越小,角速度越小,周期越大。
还有一个重要的概念是同步卫星。
同步卫星是指其绕地球运行的周期与地球自转周期相同的卫星。
同步卫星的轨道高度是固定的,大约在距离地面 36000 千米的高空。
它的特点是始终位于地球赤道上空的某一点,相对地球静止。
在研究天体问题时,我们常常要用到黄金代换公式。
在地球表面,物体受到的重力近似等于地球对物体的万有引力,即 mg = G M m /R²,可得 GM = gR²,其中 g 是地球表面的重力加速度,R 是地球的半径。
高中物理万有引力知识点总结万有引力是物理中的一个重要概念,它是描述质点之间相互作用的力。
下面是高中物理万有引力的一些基本知识点总结:1. 万有引力的定义:万有引力是质点之间由于引力的作用而产生的相互吸引力。
2. 牛顿万有引力定律:牛顿在1666年提出了万有引力定律,它表述为“两个物体之间的引力与它们质量的乘积成正比,与它们距离的平方成反比”。
具体公式为F=G(m1*m2/r^2),其中F为引力大小,G为万有引力常量,m1和m2分别为两个质点的质量,r为它们之间的距离。
3. 万有引力的特点:万有引力是一种普遍存在的力,质点之间的作用力始终存在,无论它们之间的距离有多远。
它是一种吸引力,方向始终指向两个质点之间的连线上。
4. 万有引力的质点模型:为了简化计算,我们可以将物体近似为质点,即忽略物体的大小和形状,只考虑其质量和位置。
5. 万有引力和距离的关系:根据万有引力定律,引力与距离的平方成反比。
当两个质点之间的距离加倍时,引力减少到原来的四分之一;当距离减半时,引力增加到原来的四倍。
6. 万有引力和质量的关系:引力与质量的乘积成正比。
质量越大,引力也越大;质量越小,引力也越小。
7. 万有引力常量G:G是一个常量,它的值为6.674 × 10^-11 N·m^2/kg^2。
这个常量是通过实验测量得出的,它决定了万有引力的大小。
8. 地球上物体的重力:地球的质量很大,所以其对地球表面上的物体产生的引力非常强大,我们称之为重力。
重力是物体下落的原因,它与物体的质量成正比。
地球上任何物体的重力公式为F=mg,其中F为物体的重力,m为物体的质量,g为重力加速度。
9. 使万有引力为零的情况:如果两个物体之间的距离趋于无穷远,它们之间的引力会趋于零,这时不存在任何相互作用。
10. 万有引力的应用:万有引力是天体运动的重要力学基础。
它解释了行星绕太阳的椭圆轨道、天体潮汐现象、小行星带和宇宙的膨胀等现象。
高中物理万有引力与天体运动关键信息项:1、万有引力定律的表达式及相关常量2、天体运动的基本模型3、卫星轨道类型及特点4、天体质量和密度的计算方法5、宇宙速度的概念及数值6、开普勒定律的内容11 万有引力定律万有引力定律是描述物体间相互作用的重要定律。
其表达式为:F = G (m1 m2) / r^2 ,其中 F 表示两个物体之间的引力,G 为万有引力常量,其数值约为 667×10^(-11) N·m^2/kg^2 ,m1 和 m2 分别表示两个物体的质量,r 为两个物体质心之间的距离。
111 万有引力常量的测定卡文迪许通过扭秤实验较为精确地测定了万有引力常量,为万有引力定律的应用奠定了基础。
12 天体运动的基本模型天体运动通常可以简化为以下几种基本模型:121 匀速圆周运动模型天体围绕中心天体做匀速圆周运动,其向心力由万有引力提供。
即:G (M m) / r^2 = m v^2 / r ,其中 M 为中心天体质量,m 为环绕天体质量,v 为环绕天体的线速度,r 为轨道半径。
122 椭圆运动模型在实际情况中,天体的运动轨道大多为椭圆,但在研究时可以近似为匀速圆周运动进行分析。
13 卫星轨道类型及特点卫星轨道主要分为以下几种类型:131 地球同步轨道卫星绕地球运行的周期与地球自转周期相同,从地面上看,卫星在天空中静止不动。
其轨道高度约为 36000 千米。
132 近地轨道轨道高度相对较低,一般在几百千米到几千千米之间。
卫星在此轨道上运行速度较大,周期较短。
133 太阳同步轨道卫星的轨道平面与太阳始终保持相对固定的取向,有利于对地球进行观测。
14 天体质量和密度的计算方法141 通过环绕天体的运动计算中心天体质量已知环绕天体的轨道半径 r 和线速度 v ,则中心天体质量 M = v^2 r / G ;已知轨道半径 r 和周期 T ,则 M =4π^2 r^3 /(G T^2) 。
142 天体密度的计算若天体为球体,且已知其半径 R ,则密度ρ = M /(4/3 π R^3) 。
高中物理——万有引力与航天知识点总结一、开普勒行星运动定律(1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
(2)对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积。
(3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
二、万有引力定律1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.2.公式:F=Gm1m2/r^2,其中G=6.67×10-11 N·m2/kg2,称为万有引力常量。
3.适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离。
对于均匀的球体,r是两球心间的距离。
三、万有引力定律的应用1.解决天体(卫星)运动问题的基本思路(1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式:F=Gm1m2/r^2=mv^2/r=mω2r=m(2π/T)2r(2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=Gm1m2/r^2,gR2=GM.2.天体质量和密度的估算通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即G r2(Mm)=m T2(4π2)r,得出天体质量M=GT2(4π2r3).(1)若已知天体的半径R,则天体的密度ρ=V(M)=πR3(4)=GT2R3(3πr3)(2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT2(3π)可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度.3.人造卫星(1)研究人造卫星的基本方法看成匀速圆周运动,其所需的向心力由万有引力提供.G r2(Mm)=m r(v2)=mr ω2=m 224T πr^2=ma 向.(2)卫星的线速度、角速度、周期与半径的关系①由GMm/r^2=mv^2/r 得v =GM/r ,故r 越大,v 越小②由GMm/r^2=mr ω2得ω=GMm/r^3,故r 越大,ω越小③由GMm/r^2=m(4π^2/T^2)r 得T =GM 32r 4π,故r 越大,T 越大(3)人造卫星的超重与失重 ①人造卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动,这两个过程加速度方向均向上,因而都是超重状态。
郑梁梅高级中学高一物理竞赛辅导讲义第十讲:万有引力 天体的运动【知识要点】 一、开普勒定律1.第一定律:轨道定律:所有行星都绕太阳以椭圆轨道运动,太阳是其中一个焦点。
2.第二定律:面积定律(或角动量守恒):v ⊥R =恒量(只有在椭圆两端v 和R 垂直,面积速度为v ⊥R /2)。
对面积定律分析:如图,该点速度方向与焦点连线通常不垂直(除了近日点和远日点),则单位时间内扫过的面积=该连线为半径作圆弧的面积(剩余小块面积为高价无穷小,可忽略),则把该点速度分解为沿连线分速度v //和垂直连线分速度v ⊥,时间t 内扫过面积为trv ⊥21,由面积定律有trv ⊥21=k ,即trv αsin 21=k ,对于近日点与远日点,有1121v r =2221v r3.第三定律:周期定律:T 2/a 3(a 为半长轴,作圆周运动时a 为半径)=4π2/GM =恒量。
二、万有引力定律1.万有引力定律:自然界中任何两个物体都是相互吸引的.任何两个质点之间引力的大小跟这两个质点的质量的乘积成正比,跟它们的距离的二次方成反比. 2M m F Gr= , 11226.6710/G N m kg -=⨯⋅,称为引力常量.2.重力加速度的基本计算方法设M 为地球的质量,g 为地球表面的重力加速度. 在地球表面附近(h R << )处:2M m Gm g R=,22G M g R==9.8m /s在地球上空距地心r=R+h 处:2r M g Gr=,222()r g R R grR h==+在地球内部跟离地心r 处:3224433rr r M g G G G r rrπρπρ===,r g r gR=,r r g g R=【典型例题】【例题1】飞船沿半径为R 的圆周绕地球运转,如果飞船要返回地面,可在轨道上某一点A 处将其速率调到适当的数值,使飞船沿着地心的焦点的椭圆轨道动行,椭圆与地球表面相切于B点.求飞船由A到B所需要的时间:(已知地球半径为R0)。
高中物理竞赛万有引力天体的运动知识点讲解知识点击1.开普勒定律第一定律(轨道定律):所有行星分别在大小不同的椭圆轨道上围绕太阳运动。
太阳是在这些椭圆的一个焦点上。
第二定律(面积定律):对每个行星来说,太阳和行星的连线(叫矢径)在相等的时间内扫过相等的面积。
“面积速度”:1sin 2S r t υθ∆=∆(θ为矢径r 与速度υ的夹角)第三定律(周期定律):所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值相等。
即:23T a=常量.2.万有引力定律⑴万有引力定律:自然界中任何两个物体都是相互吸引的.任何两个质点之间引力的大小跟这两个质点的质量的乘积成正比,跟它们的距离的二次方成反比. 2Mm F Gr= , 11226.6710/G N m kg -=⨯⋅,称为引力常量. ⑵重力加速度的基本计算方法设M 为地球的质量,g 为地球表面的重力加速度. 在地球表面附近(h R << )处:2Mm Gmg R =,22GMg R==9.8m/s 在地球上空距地心r=R+h 处:2r Mg G r=, 222()r g R R g r R h ==+ 在地球内部跟离地心r 处:3224433r r r M g G G G r r r πρπρ===,r g r g R = , r r g g R = 3.行星运动的能量 ⑴行星的动能当一颗质量为m 的行星以速度υ 绕着质量为M 的恒星做平径为r 的圆周运动: 2122K MmE m G rυ==,式中GM r υ=。
⑵行星的势能对质量分别为M 和m 的两孤立星系,取无穷远处为万有引力势能零点,当m 与M 相距r 时,其体系的引力势能:P MmE Gr =- ⑶行星的机械能:2122K P Mm MmE E E m G Gr rυ=+=-=- 4.宇宙速度和引力场 ⑴宇宙速度(相对地球)第一宇宙速度:环绕地球运动的速度(环绕速度).第二宇宙速度:人造天体发射到地球引力作用以外的最小速度(脱离速度).第三宇宙速度:使人造天体脱离太阳引力范围的最小速度(逃逸速度). ⑵引力场、引力半径与宇宙半径.对于任何一个质量为M ,半径为r 的均匀球形体系都有类似于地球情况下的这两个特征速度.如果第二宇宙速度超过光速,即2GM c r <,则有关系.22GMr c < 在这种物体上,即使发射光也不能克服引力作用,最终一定要落回此物体上来,这就是牛顿理论的结论,近代理论有类似的结论,这种根本发不了光的物体,被称为黑洞,这个临界的r 值被称为引力半径,记为22g GM r c=用地球质量代入,得到r g ≈0.9 cm ,设想地球全部质量缩小到1 cm 以下的小球内,那么外界就得不到这个地球的任何光信息.如果物质均匀分布于一个半径为r 的球体内,密度为ρ,则总质量为343M r πρ=又假设半径r 正好是引力半径,那么32423g g G r r cπρ⋅=,得1223()8g c r G πρ= 此式表示所设环境中光不可能发射到超出r g 的范围,联想起宇宙环境的质量密度平均值为10-29g/cm 3,这等于说,我们不可能把光发射到1028cm 以外的空洞,这个尺度称为宇宙半径.天体运动中一类应用开普勒定律的问题,解这类问题时一定要注意运动的轨道、面积、周期,但三者之间也是有关联的,正因为如此,解题时要特别注意“面积速度”。
例2.一物体A 由离地面很远处向地球下落,落至地面上时,其速度恰好等于第一宇宙速度.已知地球半径R=6400 km.若不计物体在运动中所受到的阻力,求此物体在空中运动的时间。
分析和解:物体落至地面时其速度值为第一宇宙速度值,即:Rg υ= 上式中R 为地球半径,g 为地球表面处的重力加速度。
设A 最初离地心的距离为r ,则由其下落过程中机械能守恒,应有:212Mm Mmm G GR rυ-=- 且GM=gR 2联立上三式可解得:r=2R物体在中心天体引力作用下做直线运动时,其速度、加速度是变化的,可以将它看绕中心天体的椭圆轨道运动,将其短轴取无限小。
这就是我们通常所说的“轨道极限化”。
物体A 下落可以看成是沿着很狭长的椭圆 轨道运行,其焦点非常接近此椭圆轨道长轴的 两端,如图6—2所示,则由开普勒第一定律, 得知地心为椭圆的一个焦点.则椭圆长半轴为 a=R又由开普勒第三定律,物体沿椭圆轨道运行的周期和沿绕地心(轨道不计为R )的圆轨道运行的周期相等.其周期为:22RRT gππυ== 再由开普勒第二定律得:0S t S T= 1142S ab ab π=+,0S ab π=011422(1)2ab abS R R t T S ab g gππππ+==⋅=+333.14640010(1) 2.061029.8s ⨯=+=⨯天体质量(密度)的计算问题往往是由万有引力定律和向心力公式建立天体计算的基本方程,解题时一般要注意中心天体与运动卫星关系的建立,同时还要注意忽略微小量(次要因数)的问题,这是解决这类问题的两个非常重要的因数。
例3.新发现一行星,其星球半径为6400 km ,且由通常的水形成的海洋覆盖它所有的表面,海洋的深度为10 km ,学者们对该行星进行探查时发现,当把试验样品浸入行星海洋的不同深度时,各处的自由落体加速度以相当高的精确度保持不变.试求此行星表面处的自由落体加速度.已知万有引力常量G=6. 67×10-11N m 2/ kg 2。
分析和解:解本题的关键就在于首先要建立中心天体和运动卫星,才能运用基本方程式求行星表面处的自由落体加速度,若把水视为运动卫星群,则关键是如何求中心天体的质量。
以R 表示此星球的半径,M 表示其质量,h 表示其表面层海洋的深度,R 0表示除海洋外星球内层的半径,r 表示海洋内任一点到星球中心的距离.则:0R r R >>,且0R R h =+,以ρ水表示水的密度.则此星球表面海洋水的总质量为3322300044433333m R R R h R h h πρπρπρ=-=++水水水()因R>>h ,略去h 高次项,得24m R h πρ=水 由2Mm Gmg R =表,2GMg R=表,020M m G mg R -=()m ,020G M m g R -=() 依题意:0g g =表,即:2220M M m M m R R R h --==-()()(),222m M Rh h=-R 则32422R g G R R hπρπρ⨯==⋅水表水G h将G =6. 67×10-11N m 2/kg 2,ρ水=1.0×103kg/m 3,R =6.4 ×106m 代入得:g 表=2. 7 m/s 2。
类型三、天体运动的能量问题要注意在轨运行的卫星的机械能,然后利用机械能的改变及功能原理来解题,这是因为卫星的运行轨道变化既要注意其变轨机理,又要符合能量原理。
例4.质量为m 的人造地球卫星,在圆形轨道上运行.运行中受到大小恒为f 的微弱阻力作用,以r 表示卫星轨道的平均半径,M 表示地球质量,求卫星在旋转一周的过程中:(1)轨道半径的改变量Δr=? (2)卫星动能的改变量ΔE k =?分析和解:因卫星沿圆形轨道运动,则22Mm G m r r υ=,则2122K GMmE m rυ==,则卫星的机械能为22GMm GMm GMmE r r r=-=-(1) 设卫星旋转一周轨道半径改变量为△r ,则对应机械能改变量为11222GMm GMm GMm E r r r r r r ∆=-+=-+∆+∆()(),211r rr r r r r ∆∆-≈+∆+∆=r ()r22GMm E r r ∆=∆ 根据功能原理:W=ΔE ,即222GMmrf r rπ-=∆,34r f r GMm π∆=-,负号表示轨道半径减小。
(2)卫星动能的改变量为:322114222222K GMm GMm GMm GMm GMm r fE r rfr r r r r r GMmππ∆=-=-≈∆=-⨯-=+∆+∆()()()r r 天体运动的宇宙速度问题实质上就是两个问题:一个是摆脱引力场所需要的能量的问题;一个是能量的来源问题。
而能量要么来源于燃料,要么来源于碰撞。
例5.宇宙飞行器和小行星都绕太阳在同一平面内做圆周运动,飞行器的质量比小行星的质量小很多,飞行器的速率为0υ,小行星的轨道半径为飞行器轨道半径的6倍。
有人企图借助飞行器与小行星的碰撞使飞行器飞出太阳系,于是他便设计了如下方案:Ⅰ.当飞行器在其圆周轨道的适当位置时,突然点燃飞行器上的喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得所需的速度,沿圆周轨道的切线方向离开圆轨道;Ⅱ.飞行器到达小行星的轨道时正好位于小行星的前缘,速度的方向和小行星在该处速度的方向相同,正好可被小行星碰撞;Ⅲ.小行星与飞行器的碰撞是弹性正碰。
不计燃烧的燃料质量.(1)试通过计算证明按上述方案能使飞行器飞出太阳系.(2)设在上述方案中,飞行器从发动机取得的能量为E 1.如果不采取上述方案而令飞行器在圆轨道上突然点燃喷气发动机,经过极短时间后立即关闭发动机,以使飞行器获得足够的速度沿圆轨道切线方向离开圆轨道后能直接飞出太阳系.采用这种办法时飞行器从发动机取得的能量的最小值用E 2表示.问12E E 为多少? 分析和解:(1)设太阳的质量为M 0,飞行器的质量为m ,飞行器绕太阳做圆周运动的轨道半径为R 。
根据所设计的方案,可知飞行器是从其原来的圆轨道上某处出发,沿着半个椭圆轨道到达小行星轨道上的.该椭圆既与飞行器原来的圆轨道相切,又与小行星的圆轨道相切.要使飞行器沿此椭圆轨道运动,应点燃发动机使飞行器的速度在极短时间内,由0υ变为某一值u 0.设飞行器沿椭圆轨道到达小行星轨道时的速度为u,因为大小为u 0和u 的这两个速度的方向都与椭圆的长轴垂直,由开普勒第二定律可得u 0 R= 6 Ur (1) 由能量关系,有2200011226M m M m mu G mu G R R-=- (2) 由万有引力定律,有2002M m G m R Rυ=,或00GM R υ= (3) 解(1)(2)(3)三式得00127u υ=(4),0121u υ= (5) 设小行星绕太阳运动的速度为V ,小行星的质量为M ,由万有引力定律20266M M V G M R R=(),得00166GM V R υ== (6) 可以看出V>u (7)由此可见,只要选择好飞行器在圆轨道上合适的位置离开圆轨道,使得它到达小行星轨道处时,小行星的前缘也正好运动到该处,则飞行器就能被小行星撞击。