计算题动量能量
- 格式:doc
- 大小:254.50 KB
- 文档页数:8
1-1.质点在Oxy 平面内运动,其运动方程为j t i t r )219(22-+=。
求:(1)质点的轨迹方程;(2)s .t 01=时的速度及切向和法向加速度。
1-2.一质点具有恒定加速度j i a 46+=,在0=t 时,其速度为零,位置矢量i r 100=。
求:(1)在任意时刻的速度和位置矢量;(2)质点在oxy 平面上的轨迹方程,并画出轨迹的示意图。
1-3. 一质点在半径为m .r 100=的圆周上运动,其角位置为342t +=θ。
(1)求在s .t 02=时质点的法向加速度和切向加速度。
(2)当切向加速度的大小恰等于总加速度大小的一半时,θ值为多少?(3)t 为多少时,法向加速度和切向加速度的值相等?题3解: (1)由于342t +=θ,则角速度212t dt d ==θω,在t = 2 s 时,法向加速度和切向加速度的数值分别为 222s 2t n s m 1030.2-=⋅⨯==ωr a22s t t s m 80.4d d -=⋅==t r a ω(2)当2t 2n t 212a a a a +==时,有2n 2t 3a a=,即 22212)24(3)r t (tr = s 29.0s 321==t此时刻的角位置为 rad.t 153423=+=θ (3)要使t n a a =,则有2212)24()t (r tr =s .t 550=3-1如图所示,在水平地面上,有一横截面2m 20.0=S 的直角弯管,管中有流速为1s m 0.3-⋅=v 的水通过,求弯管所受力的大小和方向。
解:在t ∆时间内,从管一端流入(或流出)水的质量为t vS m ∆=∆ρ,弯曲部分AB 的水的动量的增量则为()()A B A B v v t vS v v m p -∆=-∆=∆ρ依据动量定理p I ∆=,得到管壁对这部分水的平均冲力()A B v v I F -=∆=Sv t ρ从而可得水流对管壁作用力的大小为N 105.2232⨯-=-=-='Sv F F ρ作用力的方向则沿直角平分线指向弯管外侧。
大学物理题库 第三章 动量守恒定律和能量守恒定律一、选择题:1、水中有一只静止的小船,船头与船尾各站有一个质量不相同的人。
若两人以不同的速率相向而行,不计水的阻力,则小船的运动方向为: (A)与质量大的人运动方向一致 (B)与动量值小的人运动方向一致 (C)与速率大的人运动方向一致 (D)与动能大的人运动方向一致[ ]2、关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是: (A )不受外力作用的系统,其动量和机械能必然同时守恒;(B )所受合外力为零,内力都是保守力的系统,其机械能必然守恒;(C )不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒; (D )外力对一个系统所作的功为零,则该系统的动量和机械能必然同时守恒。
[ ]3、一质点在外力作用下运动时,下述哪种说法是正确的?(A )质点的动量改变时,质点的动能也一定改变; (B )质点的动能不变时,质点的动量也一定不变; (C )外力的冲量为零,外力的功一定为零; (D )外力的功为零,外力的冲量一定为零。
[ ]4、质量为20 g 的子弹沿X 轴正向以 500 m/s 的速率射入一木块后,与木块一起仍沿X 轴正向以50 m/s 的速率前进,在此过程中木块所受冲量的大小为 (A) 9 N·s . (B) -9 N·s . (C)10 N·s . (D) -10 N·s .[ ]5、质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为(A) 2mE 2 (B) mE 23.(C) mE 25. (D) mE 2)122([ ]6、如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1和圆弧面l 2下滑.则小球滑到两面的底端Q 时的(A) 动量相同,动能也相同. (B) 动量相同,动能不同. (C) 动量不同,动能也不同. (D) 动量不同,动能相同.[ ]7、一个质点同时在几个力作用下的位移为k j i r654+-=∆ (SI ),其中一个恒力为k j i F953+--=(SI ),则此力在该位移过程中所作的功为:(A )67J (B )91J (C ) 17J (D ) -67J[ ]8、如图3-12所示,劲度系数为k 的轻质弹簧水平放置,一端固定,另一端接一质量为m 的物体,物体与水平桌面间的摩擦系数为μ,现以恒力F 将物体自平衡位置开始向右拉动,则系统的最大势能为:(A ) ()22mg F k μ- (B ) ()221mg F k μ- (C ) 22F k(D )221F k[ ]9、质量为m 的一艘宇宙飞船关闭发动机返回地面时,可认为该飞船只在地球的引力场中运动。
动量、能量计算题专题训练1.(19分)如图所示,光滑水平面上有一质量M=4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。
现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。
小物块恰能到达圆弧轨道的最高点A 。
取g=10m/2,求:(1)小物块滑上平板车的初速度v 0的大小。
(2)小物块与车最终相对静止时,它距O ′点的距离。
(3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大?2.(19分)质量m A =3.0kg .长度L =0.70m .电量q =+4.0×10-5C 的导体板A 在足够大的绝缘水平面上,质量m B =1.0kg 可视为质点的绝缘物块B 在导体板A 的左端,开始时A 、B 保持相对静止一起向右滑动,当它们的速度减小到0v =3.0m/s 时,立即施加一个方向水平向左.场强大小E =1.0×105N/C 的匀强电场,此时A 的右端到竖直绝缘挡板的距离为S =2m ,此后A 、B 始终处在匀强电场中,如图所示.假定A 与挡板碰撞时间极短且无机械能损失,A 与B 之间(动摩擦因数1μ=0.25)及A 与地面之间(动摩擦因数2μ=0.10)的最大静摩擦力均可认为等于其滑动摩擦力,g 取10m/s 2(不计空气的阻力)求:(1)刚施加匀强电场时,物块B 的加速度的大小?(2)导体板A 刚离开挡板时,A 的速度大小?(3)B 能否离开A ,若能,求B 刚离开A 时,B 的速度大小;若不能,求B 距A 左端的最大距离。
3.(19分)如图所示,一个质量为M 的绝缘小车,静止在光滑的水平面上,在小车的光滑板面上放一质量为m 、带电荷量为q 的小物块(可以视为质点),小车的质量与物块的质量之比为M :m=7:1,物块距小车右端挡板距离为L ,小车的车长为L 0=1.5L ,现沿平行车身的方向加一电场强度为E 的水平向右的匀强电场,带电小物块由静止开始向右运动,而后与小车右端挡板相碰,若碰碰后小车速度的大小是滑块碰前速度大小的14,设小物块其与小车相碰过程中所带的电荷量不变。
动量守恒计算专题(教师版)学校:___________姓名:___________班级:___________考号:___________一、解答题1.如图所示,水平面上一轻弹簧左端固定,右端与一质量m B=2kg的物体B连接。
开始时物体B静止在O点,此时弹簧为原长,O点左侧光滑,右侧粗糙。
另一质量m A=1kg的物体A在O点右侧距O点s=1.625m处以v0=3.5m/s的速度向左运动并与B发生碰撞,碰后A、B立即一起向左运动,A、B与O点右侧水平面的动摩擦因数均为µ=0.1,物块A、B均看成质点,重力加速度大小g=10m/s2。
求:(1)A、B碰后瞬间速度多大;(2)A停止时与O点的距离。
解得0.5m x =即A 停止时距O 点的距离为0.5m 。
2.在一次冰壶运动训练中使用的红冰壶和蓝冰壶的质量都是20kg m =,开始时蓝冰壶静止在冰面上,红冰壶以一定速度向右运动并和蓝冰壶发生碰撞,碰撞时间极短,碰撞后瞬间红冰壶速度向右为10.5m s v =,蓝冰壶速度为21m v =。
求:(1)红冰壶碰撞前瞬间的速度大小;(2)两冰壶在碰撞过程中损失的机械能。
3.如图所示,用不可伸长的轻绳将小球A 悬挂于O 点,轻绳的长度为L 。
现将轻绳拉至水平并刚好伸直,将小球A 由静止释放,当小球A 运动至最低点时,与静止在水平面上的物块B 发生弹性正碰,碰撞后物块B 无能量损失地滑上不固定斜面体C ,到达的最高点未超出斜面。
已知小球A 的质量为m ,物块B 的质量为2m ,斜面体C 的质量也为2m ,A 、B 均可视为质点,重力加速度为g ,水平面与斜面均光滑,斜面底端与水平面之间由小圆弧平滑衔接,不计空气阻力。
求:(1)碰撞后瞬间,绳子对小球A 的拉力大小;(2)物块B在斜面体C上面上升的最大高度。
4.在水平面有一长木板A,A通过轻弹簧连接滑块B,刚开始,弹簧处于原长,滑块B、v=的速度从长木板左端向右运动,与长木板A都处于静止状态,现有一个滑块C以8m/sm=,不计一切滑块B发生碰撞,碰后粘在一起,碰撞时间极短。
电磁感应与动量、能量相关的计算题专题1.如图所示,两根光滑平行金属轨道MN、PQ固定在水平面内,导轨间距为L,电阻不计,两轨道间接一电容为C的电容器,磁感应强度为B的磁场垂直于轨道平面竖直向下。
导体棒ab垂直于MN、PQ放在轨道上,与轨道接触良好。
现给导体棒ab 一个向右的初速度v,求导体棒从开始运动到达到稳定状态时电容器带的电荷量。
2.电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。
电磁轨道炮示意如图所示,图中直流电动势为E,电容器的电容为C,两根固定于水平面内的光滑平行金属导轨间距为l,电阻不计。
炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S 接至1,使电容器完全充电。
然后将S接到2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动。
当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。
问:(1)磁场的方向;(2)MN刚开始运动时加速度a的大小;(3)MN离开导轨后电容器上剩余的电荷量Q是多少。
(4)安培力对“炮弹”所做的功。
【延伸题】3.(12分)如图所示,阻值为R、质量为m、边长为L的正方形金属框位于光滑绝缘的水平面上。
金属框的ab边与磁场边缘平行,并以初速度v进人磁场区域,运动方向与磁场边缘垂直。
竖直虚线之间有磁感应强度为B的匀强磁场,方向垂直水平面向下,在金属框运动方向上的长为3L。
已知金属框完全通过磁场后恰好静止,求:(1)金属框进入磁场的过程中通过ab边的电荷量;(2)从金属框完全进入磁场区域到金属框的ab边刚出磁场区域所经历的时间。
4.(14分)如图所示,有一足够大的匀强磁场区域,磁场的磁感应强度大小为1=B T,方向与水平放置的平行金属导轨所在的平面垂直,导轨光滑且足够长,宽度为2=L m,右端接有一电阻,其阻值Ω=3R。
动量定理精选习题一、单选题(本大题共7小题,共28.0分)1.如图所示,质量相等的五个物块在光滑水平面上,间隔一定距离排成一条直线.具有初动能E0的物块1向其它4个静止的物块运动,依次发生碰撞,每次碰撞后不再分开.最后5个物块粘成一个整体.这个整体的动能等于()A. E0B. 45E0 C. 15E0 D. 125E02.如图所示,小车静止在光滑水平面上,AB是小车内半圆弧轨道的水平直径,现将一小球从距A点正上方h高处由静止释放,小球由A点沿切线方向经半圆轨道后从B点冲出,在空中能上升的最大高度为0.8ℎ,不计空气阻力.下列说法正确的是()A. 在相互作用过程中,小球和小车组成的系统动量守恒B. 小球离开小车后做竖直上抛运动C. 小球离开小车后做斜上抛运动D. 小球第二次冲出轨道后在空中能上升的最大高度为0.6ℎ3.如图所示,半径为R、质量为M的14光滑圆槽置于光滑的水平地面上,一个质量为m的小木块从槽的顶端由静止滑下.则木块从槽口滑出时的速度大小为()A. √2gRB. √2gRMM+mC. √2gRmM+mD. √2gR(M−m)M4.如图所示,甲、乙两人各站在静止小车的左右两端,当他俩同时相向行走时,发现小车向右运动.下列说法不正确的是(车与地面之间无摩擦)()A. 乙的速度必定大于甲的速度B. 乙对小车的冲量必定大于甲对小车的冲量C. 乙的动量必定大于甲的动量D. 甲、乙动量总和必定不为零5.质量为m的物体,沿半径为R的轨道以速率v做匀速圆周运动,如图所示,取v B方向为正方向,求物体由A至B过程所受的合外力在半周期内的冲量()A. 2mvB. −2mvC. mvD. −mv6.两球A、B在光滑水平面上沿同一直线,同一方向运动,m A=1kg,m B=2kg,v A=6m/s,v B=2m/s.当A追上B并发生碰撞后,两球A、B速度的可能值是()A. v A′=5m/s,v B′=2m/sB. v A′=2m/s,v B′=4m/sC. v A′=−4m/s,v B′=7m/sD. v A′=7m/s,v B′=1.5m/s7.有一条捕鱼小船停靠在湖边码头,小船又窄又长,甲同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,另外一位同学用卷尺测出船后退的距离d,然后用卷尺测出船长L.已知甲同学的质量为m,则渔船的质量为( )A. m(L+d)d B. m(L−d)dC. mLdD. m(L+d)L二、多选题(本大题共3小题,共12.0分)8.如图所示,在质量为M(含支架)的小车中用轻绳悬挂一小球,小球的质量为m0,小车和小球以恒定速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短.在此碰撞过程中,下列哪个或哪些说法是可能发生的?()A. 在此过程中小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=Mv1+mv2+m0v3B. 在此碰撞过程中,小球的速度不变,小车和木块的速度分别为v1和v2,满足(M+m0)v=Mv1+mv2C. 在此碰撞过程中,小球的速度不变,小车和木块的速度都变成u,满足Mv=(M+m)uD. 碰撞后小球摆到最高点时速度变为为v1,木块的速度变为v2,满足(M+m0)v=(M+m0)v1+mv29.一静止的铝原子原子核 1327Al俘获一速度为1.0×107m/s的质子p后,变为处于激发状态的硅原子核 1428Si,下列说法正确的是()A. 核反应方程为p+ 1327Al→ 1428SiB. 核反应方程过程中系统动量守恒C. 核反应过程中系统能量不守恒D. 核反应前后核子数相等,所以生成物的质量等于反应物的质量之和E. 硅原子核速度的数量级105m/s,方向与质子初速度方向一致10.如图所示,质量M=3kg的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动.质量m=2kg的小球(视为质点)通过长L=0.75m的轻杆与滑块上的光特轴O连接,开始时滑块静止、轻杆处于水平状态.现给小球一个v0=3m/s的竖直向下的初速度,取g=10m/s2则()A. 小球m从初始位置到第一次到达最低点的过程中,滑块M在水平轨道上向右移动了0.3mB. 小球m从初始位置到第一次到达最低点的过程中,滑块对在水平轨道上向右移动了0.5mC. 小球m相对于初始位置可以上升的最大高度为0.27mD. 小球m从初始位置到第一次到达最大高度的过程中,滑块M在水平轨道上向右移动了0.54m三、计算题(本大题共10小题,共100.0分)11.如图所示,质量为5kg的木板B静止于光滑水平面上,物块A质量为5kg,停在B的左端.质量为1kg的小球用长为0.45m的轻绳悬挂在固定点O上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A发生碰撞后反弹,反弹所能达到的最大高度为0.2m,物块与小球可视为质点,不计空气阻力.已知A、B间的动摩擦因数为0.1,为使A、B达到共同速度前A不滑离木板,重力加速度g=10m/s2,求:(1)碰撞后瞬间物块A的速度大小为多少;(2)木板B至少多长;(3)从小球释放到A、B达到共同速度的过程中,小球及A、B组成的系统损失的机械能.12.如图所示,宽为L=0.1m的MN、PQ两平行光滑水平导轨分别与半径r=0.5m的相同竖直半圆导轨在N、Q端平滑连接,M、P端连接定值电阻R,质量M=2kg的cd绝缘杆垂直静止在水平导轨上,在其右侧至N、Q端的区域内充满竖直向上的匀强磁场,B=1T.现有质量m=1kg的ab金属杆,电阻为R o,R o=R=1Ω,它以初速度v0=12m/s水平向右与cd绝缘杆发生正碰后,进入磁场并最终未滑出,cd 绝缘杆则恰好能通过半圆导轨最高点,不计其它电阻和摩擦,ab金属杆始终与导轨垂直且接触良好,取g=10m/s2,求:(1)碰后瞬间cd绝缘杆的速度大小v2与ab金属杆速度大小v1;(2)碰后ab金属杆进入磁场瞬间受到的安培力大小F ab;(3)ab金属杆进入磁场运动全过程中,电路产生的焦耳热Q.13.如图所示,在光滑的水平面上有一带半圆形光滑弧面的小车,质量为M,圆弧半径为R,从距车上表面高为H处静止释放一质量为m的小球,它刚好沿圆弧切线从A点落入小车,求(1)小球到达车底B点时小车的速度和此过程中小车的位移;(2)小球到达小车右边缘C点处,小球的速度.14.如图所示,质量为3m的木块静止放置在光滑水平面上,质量为m的子弹(可视为质点)以初速度v0水平v0,试求:向右射入木块,穿出木块时速度变为25①子弹穿出木块后,木块的速度大小;②子弹穿透木块的过程中产生的热量.15.在光滑水平面上静止有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,滑块CD上表面是光圆弧,他们紧靠在一起,如图所示.一个可视为质点的物块P,质量也为m,它从木板AB的右端滑的14以初速度v0滑上木板,过B点时速度为v0,然后又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高2点C处.若物体P与木板AB间的动摩擦因数为μ,求:(1)物块滑到B处时木板AB的速度v1的大小;(2)木板AB的长度L;(3)滑块CD最终速度v2的大小.16.质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m 的小球(大小不计).今将小球拉至悬线与竖直位置成60∘角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:(1)小物块到达最低点与Q碰撞之前瞬间的速度是多大?(2)小物块Q离开平板车时平板车的速度为多大?(3)平板车P的长度为多少?(4)小物块Q落地时距小球的水平距离为多少?17.如图所示,水平地面上竖直固定一个光滑的、半径R=0.45m的1圆弧轨道,A、B分别是圆弧的端点,4圆弧B点右侧是光滑的水平地面,地面上放着一块足够长的木板,木板的上表面与圆弧轨道的最低点B 等高,可视为质点的小滑块P1和P2的质量均为m=0.20kg,木板的质量M=4m,P1和P2与木板上表面的动摩擦因数分别为μ1=0.20和μ2=0.50,最大静摩擦力近似等于滑动摩擦力;开始时木板的左端紧靠着B,P2静止在木板的左端,P1以v0=4.0m/s的初速度从A点沿圆弧轨道自由滑下,与P2发生弹性碰撞后,P1处在木板的左端,取g=10m/s2.求:(1)P1通过圆弧轨道的最低点B时对轨道的压力;(2)P2在木板上滑动时,木板的加速度为多大?(3)已知木板长L=2m,请通过计算说明P2会从木板上掉下吗?如能掉下,求时间?如不能,求共速?18.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60∘角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?(3)小物块Q落地时距小球的水平距离为多少?19.如甲图所示,光滑导体轨道PMN和是两个完全一样轨道,是由半径为r的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M和点相切,两轨道并列平行放置,MN和位于同一水平面上,两轨道之间的距离为L,之间有一个阻值为R的电阻,开关K是一个感应开关(开始时开关是断开的),是一个矩形区域内有竖直向上的磁感应强度为B的匀强磁场,水平轨道MN离水平地面的高度为h,其截面图如乙所示。
功能关系、动能定理与动量题集一、计算题1. 如图所示,一辆质量为M=6kg的平板小车停靠在墙角处,地面水平且光滑,墙与地面垂直.一质量为m=2kg的小铁块(可视为质点)放在平板小车最右端,平板小车上表面水平且与小铁块之间的动摩擦因数μ=0.45,平板小车的长度L=1m.现给铁块一个v0=5m/s的初速度使之向左运动,与竖直墙壁发生弹性碰撞后向右运动,碰撞过程中无能量损失,求:(1)最终的车速大小;(2)小铁块在平板小车上运动的过程中系统损失的机械能(g取10m/s2).2. 如图所示,传送带水平部分AB的长度L=1.5m,与一圆心在O点、半径R=1m的竖直光滑圆轨道的末端相切于A点.AB高出水平地面H=1.25m.一质量m=0.1kg的小滑块(可视为质点),由因轨道上的P点从静止释放,OP与竖直线的夹角θ=37°.已知sin37°=0.6,cos37°=0.8,g取10m/s2,滑块与传送带的动摩擦因数μ=0.2,转轮与传送带间不打滑.不计空气阻力.(1)求滑块对圆轨道末端的压力的大小.(2)若传送带以速度为v1=1.0m/s顺时针匀速转动.滑块运动至B点水平抛出.求此种情况下,滑块的落地点与B点的水平距离.(3)若传送带以速度为V2=0.8m/s顺时针匀速转动,求滑块在传送带上滑行过程中产生的热量.3. 如图甲所示,倾角为θ=37°的传送带以恒定速率逆时针运行,现将一质量m=2kg的小物体轻轻放在传送带的A端,物体相对地面的速度随时间变化的关系如图乙所示,2s末物体到达B端,取沿传送带向下为正方向,g=10m/s2,sin37°=0.6,求:(1)小物体在传送带A、B两端间运动的平均速度v;(2)物体与传送带间的动摩擦因数μ;(3)2s内物体机械能的减少量ΔE及因与传送带摩擦产生的内能Q。
4. (加试题)如图17所示,在光滑的水平面上有木块A和B,m A=0.5kg,m B=0.4kg,它们的上表面是粗糙的.今有一小铁块C,m C=0.1kg,以初速度v0=10m/s沿两木块表面滑过,最后停留在B上,此时B、C以共同速度v=1.5m/s运动,求:(1)A最终运动的速度v A;(2)C刚离开A时的速度v C;(3)整个过程中因摩擦而产生的内能.5. 如图所示,质量为M.内间距为L的箱子静止在光滑水平面上,箱子中间有一质量为m的小物块(可视为质点),初始时小物块停在箱子正中间。
动量和动能的计算问题一、动量的计算1.动量的定义:动量是物体运动的物理量,它是质量与速度的乘积,用公式表示为 p = mv。
2.动量的计算公式:动量 p = 质量 m × 速度 v。
3.动量的单位:国际单位制中,动量的单位是千克·米/秒(kg·m/s)。
4.动量的矢量性:动量是一个矢量,具有大小和方向,其方向与速度的方向相同。
5.动量的守恒定律:在没有外力作用的情况下,系统的总动量保持不变。
二、动能的计算1.动能的定义:动能是物体由于运动而具有的能量,它是质量、速度和高度的函数,用公式表示为 E_k = 1/2 m v^2。
2.动能的计算公式:动能 E_k = 1/2 × 质量 m × 速度 v^2。
3.动能的单位:国际单位制中,动能的单位是焦耳(Joule,符号 J)。
4.动能与速度的关系:动能与速度的平方成正比,速度越大,动能越大。
5.动能与质量的关系:动能与质量成正比,质量越大,动能越大。
三、动量和动能的相互转化1.动能转化为动量:当物体速度增大时,动能减小,动量增大。
2.动量转化为动能:当物体速度减小时,动量减小,动能增大。
3.动能与动量的守恒:在没有外力作用的情况下,系统的总动能和总动量保持不变。
四、动量和动能的计算应用1.碰撞问题:分析碰撞前后物体的动量和动能变化,应用动量守恒和能量守恒定律。
2.抛体运动:分析抛体在空中的动量和动能变化,考虑重力对动量和动能的影响。
3.弹性碰撞和非弹性碰撞:弹性碰撞中,动量和动能完全守恒;非弹性碰撞中,动量和动能部分守恒。
4.火箭推进:分析火箭发射过程中,燃料燃烧产生的高温气体对火箭的动量和动能影响。
知识点总结:动量和动能的计算问题是物理学中的重要内容,掌握动量和动能的定义、计算公式、相互转化关系以及应用场景,有助于深入理解物体运动规律。
习题及方法:一个质量为2kg的物体以6m/s的速度撞击另一个质量为1kg的静止物体,求撞击后两个物体的动量。
压轴题04用动量和能量的观点解题1.本专题是动量和能量观点的典型题型,包括应用动量定理、动量守恒定律,系统能量守恒定律解决实际问题。
高考中既可以在选择题中命题,更会在计算题中命题。
2024年高考对于动量和能量的考查仍然是热点。
2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。
3.用到的相关知识有:动量定理、动量守恒定律、系统机械能守恒定律、能量守恒定律等。
近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型为弹性碰撞,完全非弹性碰撞,爆炸问题等。
考向一:动量定理处理多过程问题1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。
2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。
3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。
(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小。
4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程。
研究过程既可以是全过程,也可以是全过程中的某一阶段。
(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力。
(3)规定正方向。
(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考向二:动量守恒定律弹性碰撞问题两球发生弹性碰撞时应满足动量守恒和机械能守恒。
以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m 1v 21=12m 1v ′21+12m 2v ′22②由①②得v ′1=m 1-m 2v 1m 1+m 2v ′2=2m 1v 1m 1+m 2结论:①当m 1=m 2时,v ′1=0,v ′2=v 1,两球碰撞后交换了速度。
1.如图1所示,质量为M的足够长木板置于光滑水平地面上,一质量为m的木块以水平初速度v滑上长木板,已知木块与木板之间的摩擦因数为 ,求:(1)m的最终速度v;(2)m与M相对滑动产生的焦耳热Q;(3)m在M上相对滑动的距离L。
变式练习:质量为M的木块静止在光滑的水平面上,现有一质量为m、速度v0的子弹水平地射中木块,使木块在水平面上平动,子弹在木块内深入距离d后相对木块静止,并留在木块内.求子弹深入木块d的这段时间内木块滑行的距离,(设子弹在木块内所受阻力是恒定的).2.如图所示,重物M质量为1.0kg,以10m/s的初速度沿水平台面从A点向右运动,在B点与质量为0.20kg的静止小球m相碰撞,结果重物M落在地面上的D点.已知重物M与台面AB间的动摩擦因数为0.10,图中AB长18m,BC和CD均等于5.0m,取g=10m/s2.求:(1)重物M与小球碰撞前瞬间速度大小;(2)重物M与小球碰撞中所减少的动能,(3)小球m落地点F与重物M落地点D之间的距离.3.如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,一端与质量为m2的档板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM 段A 、B 与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g ,求: (1)物块A 在与挡板B 碰撞前瞬间速度v 的大小;(2)弹簧最大压缩量为d 时的弹性势能E p (设弹簧处于原长时弹性势能为零).4.如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L=15 m,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止。
物块与车面间的动摩擦因数 =0.5,取g=10 m/s 2,求 (1)物块在车面上滑行的时间t;(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v ′0不超过多少。
5.如图所示,光滑水平面上有一质量M=4.0kg 的带有圆弧轨道的平板车,车的上表面是一段长L=1.5m 的粗糙水平轨道,水平轨道左侧连一半径R=0.25m 的41光滑圆弧轨道,圆弧轨道与水平轨道在O ′点相切。
现将一质量m=1.0kg 的小物块(可视为质点)从平板车的右端以水平向左的初速度v 0滑上平板车,小物块与水平轨道间的动摩擦因数μ=0.5。
小物块恰能到达圆弧轨道的最高点A 。
取g=10m/2,求:(1)小物块滑上平板车的初速度v 0的大小。
(2)小物块与车最终相对静止时,它距O ′点的距离。
(3)若要使小物块最终能到达小车的最右端,则v 0要增大到多大?6如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A点由静止出发绕O点下摆,当摆到最低点B时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A.求男演员落地点C与O点的水平距离s.已知男演员质量m1和女演员质量m2之比122mm=,秋千的质量不计,秋千的摆长为R,C点比O点低5R.7.如下图所示,光滑的曲面轨道的水平出口跟停在光滑水平面上的平板小车的上表面相平,质量为m的小滑块从光滑轨道上某处由静止开始滑下并滑下平板小车,使得小车在光滑水平面上滑动。
已知小滑块从光滑轨道上高度为H的位置由静止开始滑下,最终停到板面上的Q点。
若平板小车的质量为3m。
用g表示本地的重力加速度大小,求:(1)小滑块到达轨道底端时的速度大小v0=?(2)小滑块滑上小车后,平板小车可达到的最大速度v=?(3)该过程系统产生的总内能Q=?8.如图2-9所示,一质量为M、长为l0的长方形木板B放在光滑水平地面上,在其右端放一质量为m的小物块A,m<M,现以地面为参照系给A、B以大小相等、方向相反的初速度,使A开始向左运动、B开始向右运动,最后A刚好没有滑离B板,以地为参照系。
(1)若已知A和B的初速度大小v0,则它们最后的速度的大小和方向;(2)若初速度大小未知,求小木块A向左运动到达的最远处(从地面上看)离出发点的距离.图2-9图14 9、在光滑的水平面上有一质量M = 2kg 的木板A ,其右端挡板上固定一根轻质弹簧,在靠近木板左端的P 处有一大小忽略不计质量m = 2kg 的滑块B 。
木板上Q 处的左侧粗糙,右侧光滑。
且PQ 间距离L = 2m ,如图所示。
某时刻木板A 以υA = 1m/s 的速度向左滑行,同时滑块B 以υB = 5m/s 的速度向右滑行,当滑块B 与P 处相距 34L 时,二者刚好处于相对静止状态,若在二者共同运动方向的前方有一障碍物,木板A 与它碰后以原速率反弹(碰后立即撤去该障碍物)。
求B 与A 的粗糙面之间的动摩擦因数μ和滑块B 最终停在木板A 上的位置。
(g 取10m/s 2)10.如图14所示,两个完全相同的质量为m 的木板A 、B 置于水平地面上,它们的间距s=2.88m 。
质量为2m ,大小可忽略的物块C 置于A 板的左端。
C 与A 之间的动摩擦因数为μ1=0.22,A 、B 与水平地面之间的动摩擦因数为μ2=0.10,最大静摩擦力可以认为等于滑动摩擦力。
开始时,三个物体处于静止状态。
现给C 施加一个水平向右,大小为mg 52的恒力F ,假定木板A 、B 碰撞时间极短且碰撞后粘连在一起,要使C 最终不脱离木板,每块木板的长度至少应为多少?11.如图2-4-6所示,光滑的水平面上有mA =2kg ,mB = mC =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求:(1)当物体B 与C分离时,B 对C 做的功有多少? (2)当弹簧再次恢复到原长时,A 、B 的速度各是多大?参考答案及评分标准1.解m 与M 之间速度不同,必然存在相对运动,在相互的摩擦力作用下m 减速而M 加速,当两者速度相同时无相对运动达共速,所以m 的最终速度v 即为两者的共同速度共V 。
对m 、M 整体分析知,系统所受合外力为零,动量守恒,既然两者出现共速,动能必然要减少,从能量守恒的角度看,减少的动能转化为内能产生焦耳热。
产生的热就其原因看是由于两者的相互摩擦,所以可以利用摩擦力产生热的特点即相对滑动S f Q ⋅=得解。
(1)对m 、M 组成系统受力分析知,其合外力为零,由动量守恒得v M m mv )(0+= ○1 ∴ Mm m v v +=○2(2)对系统由能量守恒得产生焦耳热 220)(2121v M m mv Q +-=○3 ∴ 由○2、○3解得 )(220M m m M vQ += ○4(3)由滑动摩擦力生热特点得L mg L f Q ⋅=⋅=μ ○5∴ 解得 )(22M m g Mv L +=μ ○66. 解:设分离前男女演员在秋千最低点B 的速度为v 0,由机械能守恒定律,设刚分离时男演员速度的大小为v 1,方向与v 0相同;女演员速度的大小为v 2,方向相反,由动量守恒,(m 1+m 2)v 0=m 1v 1-m 2v 2分离后,男演员做平抛运动,设男演员从被推出到落在C 点所需的时间为t ,由运动学规律,根据题给条件,女演员刚回到A 点,由机械能守恒定律,已知m 1=2m 2,由以上各式可得:s=8R7、解:滑块滑至Q 点时它与小车具有相同速度,这个速度大小正是所求的V ,则有: m g H mv =1202 ①(5分) mv m m V 03=+()②(3分) Q mv m m V =-+12123022() ③(3分) 解得:v gH 02=④(3分) V gH =142 ⑤(3分) Q m g H =34⑥(2分)8.(1)Mv 0-mv 0=(M +m )v ,速度v =mM v m M +-0)(①,方向水平向右.(2)恰好没有滑离,则Q =fl 0=20)(21v m M +-2)(21v m M +②,A 向左运动到达最远处时速度为0, 对由动能定理得:-fs =0-2021mv ③,由①②③得s =Ml m M 4)(0+.9、解:设M 、m 共同速度为υ,由动量守恒定律得mυB - MυA = ( M + m )υ υ =mυB - MυAM + m= 2m/s 对A ,B 组成的系统,由能量守恒1 2 MυA 2 + 1 2 mυB 2 - 1 2 ( M + m ) υ2 = μmg 34L代入数据得 μ = 0.6木板A 与障碍物发生碰撞后以原速率反弹,假设B 向右滑行并与弹簧发生相互作用,当A 、B 再次处于相对静止状态时,两者的共同速度为u ,在此过程中,A 、B 和弹簧组成的系统动量守恒、能量守恒。
由动量守恒定律得mυ - Mυ = ( M + m )uu = 0 设B 相对A 的路程为s ,由能量守恒得 1 2( M + m ) υ2 = μmgs代入数据得 s = 2 3m由于 s > L4 ,所以B 滑过Q 点并与弹簧相互作用,然后相对A 向左滑动到Q 点左边,设离Q 点距离为s 1s 1 = s - 14 L = 0.17m10、设A 、C 之间的滑动摩擦力大小为f 1,A 与水平地面之间的滑动摩擦力大小为f 2∵ μ1=0.22,μ2=0.10∴ F =25mg <f 1=μ12mg ① 且 F =25mg >f 2=μ2(2m +m )g ②∴ 一开始A 和C 保持相对静止,在F 的作用下向右加速运动,有 (F -f 2)s =211(2)2m m v + ③ A 、 B 两木块的碰撞瞬间,内力的冲量远大于外力的冲量,由动量守恒定律得 m v 1=(m+m )v 2 ④碰撞结束后到三个物体达到共同速度的相互作用过程中,设木块向前移动的位移为s 1,选三个物体构成的整体为研究对象,外力之和为零,则2mv 1+(m+m )v 2=(2m+m+m )v 3 ⑤f 1s 1-f 3s 1=2232112222m mv - ⑥f 3=μ2(2m+m+m )g ⑦ 对C 物体,由动能定理221113111(2)(2)2222F l s f l s m m +-+=- ⑧ 由以上各式,再代入数据可得l =0.3m11.(1)当弹簧恢复原长时,B 与C 分离,0=m A v A -(m B +m c )v C ①,E P =221A A v m +2)(21C C B v m m ②,对C 由动能定理得W =221C C v m -0③,由①②③得W =18J ,v A =v C =6m/s . (2)取A 、B 为研究系统,m A v A -m B v C = m A v A ’ +m B v C ’, 221A A v m +221C B v m =21 m A v A’2+21m B v C’2,当弹簧恢复到原长时A 、B 的速度分别为:,v A =v B =6m/s 或v A =-2m/s , v B =10m/s .。