单分型面注射模
- 格式:doc
- 大小:631.00 KB
- 文档页数:15
单分型面注射模的一般工作过程为:模具闭合—模具锁紧—注射—保压—补缩—预塑—冷却—开模—推出塑件。
下面以图3-1为例来讲解单分型面注射模的工作过程。
在导柱2和导套1的导向定位下,动模和定模闭合。
型腔零件由定模镶件7、动模镶件5、型芯19和22组成,并由注射机合模系统提供的锁模力锁紧;然后注射机的注射装置前移,注射机的喷嘴贴紧浇口套后开始注射,塑料熔体经浇注系统进入型腔;熔体充满型腔后,进行保压、补缩,同时注射装置进行预塑,为下一个工作循环作好物料的准备;经冷却定型后开模,开模时,注射机合模系统带动动模后退,模具从动模和定模分型面分开,塑件随动模一起后退,同时,在拉料杆4前端的倒锥形冷料穴的作用下,使浇注系统的主流道凝料从浇口套6中脱出。
当动模移动一定距离后,注射机的顶杆与推板15接触,推出机构开始动作,使推管20、21将塑件从型芯19、22和动模镶件5中推出,拉料杆4将浇注系统凝料从冷料穴中推出,塑件与浇注系统凝料一起从模具中落下,至此完成一次注射过程。
合模时,推出机构靠复位杆23复位,并准备下一次注射。
在此必须说明,有些注射机上配备有液压顶出缸,在开模动作完成后,液压顶出缸开始工作,推动推出机构完成推出动作。
图3-1 衬套注射模
1—导套 2—导柱 3—推板导柱 4—拉料杆5—动模镶件6—浇口套7—定模镶件8—定位圈9—定模座板 10—定
模固定板 11—动模固定板 12—支承板 13—垫块
14—推管固定板 15—推板 16—型芯固定板 17—动模座板 18—水嘴 19—型芯1 20—推管1 21—推管
2 22—型芯2 23—复位杆 24—螺塞 25—推板导柱。
目录一、塑料的工艺分析二、注射成型机的选择三、型腔布局与分形面设计四、浇注系统的设计五、成型零件的设计六、合模导向机构的设计七、拉料杆的设计八、模架的结构九、开模行程的校核十、模具加热、冷却系统的设计十一、工艺卡片端盖:材料为ABS,塑件重量为5g,大批量生产,塑件要求:外侧表面光滑,不允许有交口痕迹,试设计该塑件的成型模具塑件零件图。
设计任务:装配图一张零件图两张设计说明书㈠塑料的工艺分析1、注塑模工艺ABS 丙烯腈-丁二烯-苯乙烯共聚物化学和物理特性ABS是由丙烯腈、丁二烯和苯乙烯三种化学单体合成。
每种单体都具有不同特性:丙烯腈有高强度、热稳定性及化学稳定性;丁二烯具有坚韧性、抗冲击特性;苯乙烯具有易加工、高光洁度及高强度。
ABS是非结晶性材料。
ABS材料具有超强的易加工性,外观特性,低蠕变性和优异的尺寸稳定性以及很高的抗冲击强度。
注塑模工艺条件:干燥处理:ABS材料具有吸湿性,要求在加工之前进行干燥处理。
建议干燥条件为80~90C下最少干燥2小时。
材料温度应保证小于0.1%。
熔化温度:210~280C;建议温度:245C。
模具温度:25…70C。
(模具温度将影响塑件光洁度,温度较低则导致光洁度较低)。
注射压力:500~1000bar。
注射速度:中高速度。
2、塑件成型工艺参数的确定3、塑件的尺寸与公差塑料的尺寸精度往往不高,应保证在使用要求的前提下尽可能的选用低精度的等级。
我国已颁布了工程塑料尺寸公差的国家标准,塑件尺寸公差代号为MT,等级分为7级,每一级又可分为A、B两部分,其中A部分不受模具的影响尺寸的公差,B部分为受模具活动影响尺寸的公差。
塑料公差等级的选用与塑料品种及装配情况有关,该塑料选用未注公差尺寸MT5,对孔类尺寸可取数值冠以+号,对轴类尺寸可取表中数值冠以—号对中心距尺寸可取表中数值冠以+—号一般模具表面粗糙值要比塑件的要求低1~2级,塑料制作的表面粗糙度值一般为Ra0.8~0.2之间。
注射模的分类方法很多。
例如可按安装方式、型胶数目和结构特征等进行分类,佃是从模只设计的角度上看,按注射模具的总体结构特征分类最为方便。
一般可将注射模具分为以下几类。
(1)单分型砌注射模具。
单分型面注射模只又称为两板式模具,它是注射模具巾最简单而又员常用的一类。
据统计.两板式模具占全部泞射模具的70%。
如图4—l所尔的单分型面注射模具,钽电容型腔的一部分(型芯)在动模板上,另一部分(凹模)在定模板上。
申分泅而注射模具结构简单、操作方便,但是除采用直接浇口之外,型腔的浇口位置只能选择在制品的侧面。
(2)双分型面注射模具。
双分型6j注射模具以两个不同的分型面分别取出流通内的凝料利塑料制品,与两板式的单分型面泞射模具相比,双分型面注射模具在动模板与定模板之间增加了一块可以移动的中间板(又名浇口板),故又称二板式模具。
在定模板与中间板之间设置流道,齐小问板与功模板之间设置型腔,中间板适用于采用点浇口进料的单型腔或多型腔模具。
图4—2示lU典型的双分型面注射模简图。
从阁中可见,在开模时由于定距执板的限制,流道板13与定模板14作定距离的分开,以便取山这两块板之间流道内的凝料,在小间板与动模板分开后,利用推件板;将包紧在型芯上的制品脱出。
双分型回注射模义能在制品的小心部件设量点浇n,但制造成本较高、结构复杂,需要较大的开横行程,故较少用于大型塑料制而的注射成型。
(3)带有活动镶件的注射模具。
由于塑料制品的复杂结构,无法通过简单的分型从模具内取出制品,这时可在模具小设置活动镶件和活动的侧向型芯或半块(哈夫块),如图4—3 所尔。
开模时这些活动部件不能简单地沿开模方向与制品分离,而在脱模时将它们连同制品一起移出模外,然后用手:工或简单工具将它们与制品分开。
肖将这些活动镀件装入模具时还应可靠地定位,因此这类模具的少产效本个高,常用于小批量的生产。
(4)带侧向分型抽芯的注射模具。
当塑料制品上有侧扎或侧凹时,在模具内可设置由斜导柠或斜滑块等组成的侧向分型抽;络机构,它能使侧型芯作横向移动。
注射模具的基本结构一、典型的注射模具结构注射模具由动模和定模两部分组成,动模安装在注射成型机(简称注射机)的移动模板上,定模安装在注射机的固定模板上。
在注射成型时动模与定模闭合构成浇注系统和型腔,开模时动模与定模分离以便取出塑料制品。
图5—1示出典型的单分型面注射模结构,根据摸具中各个部件所起的作用,一般可将注射模细分为以下几个基本组成部分。
图5—1典型的单分型面注射模1一定位套2一主流道衬套3一定模座板 4一定模板 5一动模 6一动模垫板7一模底座 8一推出固定板 9一推板 10一拉料杆 11一推杆 12一导柱13一型芯 14一凹模 15一冷却水通道1 成型部件成型部件由型芯和凹模组成。
型芯形成制品的内表面形状,凹模形成制品的外表面形状。
合模后型芯和凹模便构成了模具的型腔,如图5—1所示,该模具的塑腔由件13和件14组成。
按工艺和制造的要求,有时型芯或凹模由若干拼块组合而成,有时做成整体,仅在易损坏、难加工的部位采用镶件。
选作型芯或凹模的钢材,要求有足够的强度,表面耐磨性,有时还需要有耐腐蚀性,并且淬火后的变形量要小,故常采用合金结构钢或合金工具钢。
当要求较低或批量较小时也可选用中碳钢或碳素工具钢来制造简单的型芯和凹模。
2.浇注系统浇注系统又称为流道系统,它是将塑料熔体由注射机喷嘴引向型腔的一组进料通道,通常由主流道、分流道,浇口和冷料穴组成,浇注系统的设计十分重要,它直接关系到塑料制品的成型质量和生产效率。
3.导向部件为了确保动模与定模在合模时能准确对中,在模具中必须设置导向部件。
在注射模中通常采用四组导柱与导套来组成导向部件,有时还需在动模和定模上分别设置互相吻合的内、外锥面来辅助定位。
为了避免在制品推出过程中推板发生歪斜现象,一般在模具的推出机构中还设有使推板保持水平运动的导向部件,如导柱与导套。
4.推出机构在开模过程中,需要有推出机构将塑料制品及其在流进内的凝料推出或拉出。
例如在图1中,推出机构由推杆11和推出固定板8、推板9及主流道的拉料杆10组成。
注射模分类1.单分型面注射模具(2 PLATE MOLD)单分型面注射模具又称为两板式模具,它是注射模具中最简单而又最常用的一类。
型腔的一部分(型芯)在动模板上,另一部分(凹模)在定模板上。
主流道设在定模一侧,分流道设在分型面上。
塑料成熔融状态后,通过啤机的喷嘴在高温、高压、高速下,经过浇注系统进入型腔。
保压一段时间,经过一段时间的冷却,使制品硬化到一定程度后,在啤机作用下使后模向后退,模具在P L1处开一段距离。
并且由于动模上拉料杆的拉料作用以及制品因收缩包紧在后模仁上,制品连同流道一起留在动模一侧。
接着啤机的顶杆通过K.O孔,推动顶针板,带动顶针等,顶出制品。
合模时在啤机的作用下使模具合拢。
顶针板由回针复位,带动顶针等回复原位。
(通过3D 图更详细的讲解模具结构及开模动作)。
2. 三板模或细水口模(3 PLATE MOLD, PIN-POINT GATE MOLD)有两个分型面将模具分成三部分,比两板模增加了浇口板,适用于制品的四周不准有浇口痕迹、成品表面针点进胶、进胶点偏心的场合,这种模具采用点浇口,所以叫细水口模。
开模时,在啤机作用下动模向后退,A、B板由于胶钉作用不开模,又由于唧嘴扣住流道,面板与水口推板固定不动。
故首先在P L1处开模,使分流道与制品分开。
经过B行程之后,行程螺丝带动水推板,使面板与水口推板在P L2开模,主流道脱离唧嘴。
再经过行程A之后,在限位螺丝1、2的作用下A板不能再跟B板远动。
PL3开模。
注意事项:设计时要保证以下关系:1:B>S1+S2+20; 2: L>A+B+C+20; 3: A>S1;B—限位螺丝(1)的行程;A—限位螺丝(2)的行程;S1—主流道的长度;S2—分流道的长度;C—上下模相插高度;3.热流道模(HOT RUNNER MANIFOLD)借助加热装置使浇注系统中的塑料不会凝固,也不会随制品脱模,所以又称无流道模。
优点:1)无废料2)可降低注射压力,可以采用多腔模;3)可缩短成型周期4)提高制品的质品。
分型面形式 设计原则 型腔数目第三章 单分型面注射模一、本章基本内容本章内容包括了塑料注射成型模具的总体结构设计;单分型面注射模各组成机构的功能和设计方法;塑料注射成型模具中塑件的位置;普通浇注系统的设计;成型零部件尺寸计算;简单推出机构设计;温度调节系统的设计;模具结构零部件设计等;单分型面注射模的设计步骤和设计方法。
单分型面注射模具组成和工作过程分型面单分型面注射模具浇注系统设计成形零部件设计推出机构设计温度调节系统设计主流道 分流道 浇 口 平衡问题 型 腔 型 芯 螺纹型芯 螺纹型环工作尺寸计算 刚度强度校核 推杆推出机构 推管推出机构 推件板推出机构推出力计算流动比校核 流道长度计算 浇注系统平衡计算方法单 分 型 面 模 具模具冷却系统 模具加热系统冷却回路尺寸计算 结构形式确定 电加热装置总功率计算二、学习目的与要求通过本章的学习,应掌握单分型面注射模的总体结构和浇注系统、推出机构的一般设计过程和方法。
三、本章重点、难点:单分型面注射模的总体结构和浇注系统、推出机构的一般设计过程和方法,,温度调节系统的设计。
1、单分型面注射模的组成按机构组成,单分型面注射模由模腔、成型零部件、浇注系统、导向机构、顶出装置、温度调节系统和结构零部件组成。
(1) 模腔模具中用于成型塑料制件的空腔部分,由于模腔是直接成型塑料制件的部分,因此模腔的形状应朽塑件的形状一致,模腔一般由型腔、型芯组成。
(2) 成型零部件构成塑料模具模腔的零件统称为成型零部件,通常包括型芯(成型塑件内部形状)、型腔(成型塑件外部形状)。
(3) 浇注系统将塑料由注射机喷嘴引向型腔的流道称为浇注系统,浇注系统分主流道、分流道、浇口、冷料穴四个部分,是由浇口套、拉料杆和定模板上的流道组成。
(4) 导向机构为确保动模与定模合模时准确对中而设导向零件。
通常有导向柱、导向孔或在动模定模上分别设置互相吻合的内外锥面组成。
(5) 推出装置在开模过程中,将塑件从模具中推出的装置。
有的注射模具的推出装置为避免在顶出过程中推出板歪斜,还设有导向零件,使推板保持水平运动。
由推杆、推板、推杆固定板、复位杆、主流道拉料杆、支承钉、推板导柱及推板导套组成。
(6) 温度调节和排气系统为了满足注射工艺对模具温度的要求,模具设有冷却或加热系统,冷却系统一般在模具内开设冷却水道,冷却系统是由冷却水道和水嘴组成。
加热则在模具内部或周围安装加热元件,如电加热元件。
在注射成型过程中,为了将型腔内的气体排除模外,常常需要开设排气系统。
(7) 结构零部件用来安装固定或支承成型零部件及前述的各部分机构的零部件。
支承零部件组装在一起,可以构成注射模具的基本骨架。
2、单分型面注射模的工作原理单分型面注射模的工作原理:模具合模时,在导柱和导套的导向定位下,动模和定模闭合。
型腔由定模板上的型腔与固定在动模板上型芯组成,并由注射机合模系统提供的锁模力锁紧。
然后注射机开始注射,塑料熔体经定模上的浇注系统进入型腔,带熔体充满型腔并经过保压、补塑和冷却定型后开模。
开模时,注射机合模系统带动动模后退,模具从动模和定模分型面分开,塑件包在型芯上随动模一起后退,同时,拉料杆将浇注系统的主流道凝料从浇口套中拉出。
当动模移动一定距离后,注射机的顶杆接触推板,推板机构开始动作,使推杆和拉料杆分别将塑件及浇注系统凝料从型芯和冷料穴中推出,塑件在浇注系统凝料一起从模具中落下,至此完成一次注射过程。
合模时,推出机构靠复位杆复位并准备下一次注射。
3、单分型面注射模具浇注系统设计(1) 普通浇注系统的组成浇注系统是指模具中由注射机喷嘴到型腔之间的进料通道。
普通浇注系统一般由主流道、分流道、浇口和冷料穴四部分组成。
图3.6a 为安装在卧式或立式注射机上的注射模具所用的浇注系统,亦称为直浇口式浇注系统,其主流道垂直于模具分型面;图3.6b 为安装在角式注射机上的注射模具所用浇注系统,主流道平行于分型面。
(2) 浇注系统的设计原则设计浇注系统应遵循如下基本原则: ① 了解塑料的成形性能 ② 尽量避免或减少产生熔接痕 ③ 有利于型腔中气体的排出 ④ 防止型芯的变形和嵌件的位移 ⑤ 尽量采用较短的流程充满型腔 (3) 流动比的校核流动距离比简称流动比,它是指塑料熔体在模具中进行最长距离的流动时,其截面厚度相同的各段料流通道及各段模腔的长度与其对应截面厚度之比值的总和,即[]φφ≤=∑=ni iit L 1 (3—4) 式中 φ—— 流动距离比;L —— 模具中各段料流通道及各段模腔的长度,mm; t —— 模具中各段料流通道及各段模腔的截面厚度,mm ; []φ—— 塑料的许用流动距离比。
(4) 主流道的设计主流道是指浇注系统中从注射机喷嘴与模具接触处开始到分流道为止的塑料熔体的流动通道。
主流道是熔体最先流经模具的部分,它的形状与尺寸对塑料熔体的流动速度和充模时间有较大的影响,因此,必须使熔体的温度降和压力损失最小。
①主流道尺寸在卧式或立式注射机上使用的模具中,主流道垂直于分型面。
由于主流道要与高温塑料熔体及注射机喷嘴反复接触,所以只有在小批量生产时,主流道才在注射模上直接加工,大部分注射模中,主流道通常设计成可拆卸、可更换的主流道浇口套。
为了让主流道凝料能从浇口套中顺利拔出,主流道设计成圆锥形,其锥角α为2º~6º。
小端直径d比注射机喷嘴直径大0.5~1 mm。
由于小端的前面是球面,其深度为3~5 mm,注射机喷嘴的球面在该位置与模具接触并且贴合,因此要求主流μ。
道球面半径比喷嘴球面半径大1-2mm。
流道的表面粗糙度值Ra为0.08m②主流道浇口套图4 主流道浇口套及其固定形式主流道浇口套一般采用碳素工具钢如T8A、T10A等材料制造,热处理淬火硬度53—57HRC。
主流道浇口套及其固定形式如图4所示.(5) 分流道设计分流道是指主流道末端与浇口之间的一段塑料熔体的流动通道。
分流道作用是改变熔体流自,使其以平稳的流态均衡地分配到各个型腔。
设计时应注意尽量减少流动过程中的热量损失与压力损失。
①分流道的形状与尺寸分流道开设在动、定模分型面的两侧或任意一侧,其截面形状应尽量使其比表面积(流道表面积与其体积之比)小。
常用的分流道截面形式有圆形、梯形、u形、半圆形及矩形等,如图3.9所示。
梯形及u形截面分流道加工较容易,且热量损失与压力损失均不大,是常用的形式。
②分流道的长度根据型腔在分型面上的排布情况,分流道可分为一次分流道、两次分流道甚至三次分流道。
分流道的长度要尽可能短,且弯折少,以便减少压力损失和热量损失,节约塑料的原材料和能耗。
③分流道的表面粗糙度由于分流道中与模具接触的外层塑料迅速冷却,只有内部的熔体流动状态比较理想,因此分流道表面粗糙度数值不能太小,一般取0.16 µm左右,这可增加对外层塑料熔体的流动阻力.使外层塑料冷却皮层固定,形成绝热层。
④分流道的布置分流道常用的布置形式有平衡式和非平衡式两种,这与多型腔的平衡式与非平衡式的布置是一致的。
(6) 浇口设计①浇口的概念浇口亦称进料口,是连接分流道与型腔的熔体通道。
浇口的设计与位置的选择恰当与否,直接关系到塑件能否被完好、高质量地注射成形。
②浇口的作用浇口可分成限制性浇口和非限制性浇口两类。
非限制性浇口是整个浇注系统中截面尺寸最大的部位,它主要是对中大型筒类、壳类塑件型腔起引料和进料后的施压作用。
限制性浇口是整个浇注系统中截面尺寸最小的部位,其作用如下:a)浇口通过截面积的突然变化,使分流道送来的塑料熔体提高注射压力,使塑料熔体通过挠口的流速有一突变性增加,提高塑料熔体的剪切速率,降低黏度,使其成为理想的流动状态,从而迅速均衡地充满型腔。
对于多型腔模具,调节浇口的尺寸,还可以使非平衡布置的型腔达到同时进料的目的。
b)浇口还起着较早固化、防止型腔中熔体倒流的作用。
c)浇口通常是浇注系统最小截面部分,这有利于在塑件的后加丁中塑件与浇口凝料的分离。
③单分型面注射模浇口的类型单分型面注射模的浇口可以采用直接浇口、中心浇口、侧浇口、环形浇口、轮辐式浇口和爪形浇口。
a) 直接浇口直接浇口叉称为主流道型浇口,它属于非限制性浇口。
这种形式的浇口只适于单型腔模具,直接浇口的形式见图5。
特点是:流动阻力小,流动路程短及补缩时间长等;有利于消除深型腔处气体不易排出的缺点;塑件和浇注系统在分型面上的投影面积最小,模具结构紧凑,注射机受力均匀;塑件翘曲变形、浇口截面大,去除浇口困难,去除后会留有较大的浇口痕迹,影响塑件的美观。
b)中心浇口图5 直接浇口图6 中心浇口当筒类或壳类塑件的底部中心或接近于中心部位有通孔时,内浇口开设在该孔处,同时在中心处设置分流锥,该浇口称为中心浇口,是直接浇口的一种特殊形式,如图5所示。
它具有直接浇口的一系列优点,而克服了直接浇口易产生的缩孔、变形等缺陷。
c) 侧浇口侧浇口一般开设在分型面上,塑料熔体从内侧或外侧充填模具型腔,其截面形状多为%(扁槽),是限制性浇口。
侧浇口广泛使用在多型腔单分型面注射模上,侧浇口的形式如图6所示。
特点是由于浇口截面小,减少了浇注系统塑料的消耗量,同时去除浇口容易,不留明显痕迹。
图7 侧浇口侧浇口的两种变异形式为扇形浇口和平缝浇口。
扇形浇口是一种沿浇口方向宽度逐渐增加、厚度逐渐减少的呈扇形的侧浇口,平缝浇口又称薄片浇口,浇口宽度很大,厚度很小。
主要用来成形面积较小、尺寸较大的扁平塑件,可减小平板塑件的翘曲变形,但浇口的去除比扇形浇口更困难,浇口在塑件上痕迹也更明显。
d) 环形浇口对型腔填充采用圆环形进料形式的浇口称环形浇口,见图8。
环形浇口的特点是进料均匀.圆周上各处流速大致相等,熔体流动状态好.型腔中的空气容易排出,熔接痕可基本避免,但浇注系统耗料较多,浇口去除较难。
图8环形浇口图9轮辐式浇口e) 轮辐式浇口轮辐式浇口是在环形浇口基础上改进而成,由原来的圆周进料改为数小段圆弧进料,轮辐式浇口的形式见图9。
这种形式的浇口耗料比环形浇口少得多.且去除浇口容易。
这类浇口在生产中比环形浇口应用广泛.多用于底部有大孔的圆筒形或壳形塑件。
轮辐浇口的缺点是增加了熔接痕,会影响塑件的强度。
f ) 爪形浇口爪形浇口加工较困难,通常用电火花成形。
型芯可用做分流锥,其头部与主流道有自动定心的作用,从而避免了塑件弯曲变形或同轴度差等成形缺陷。
爪形浇口的缺点与轮辐式浇口类似,主要适用于成形内孔较小且同轴度要求较高的细长管状塑件。
④浇口位置的选择原则a)尽量缩短流动距离b)避免熔体破裂现象引起塑件的缺陷c)浇口应开设在塑件厚壁处d)考虑分子定向的影响e)减少熔接痕,提高熔接强度(7) 浇注系统平衡设计①浇注系统的平衡概念为了提高生产效率,降低成本,小型(包括部分中型)塑件往往采取一模多腔的结构豫应尽量采用型腔平衡式布置的形式。