判断向量组线性相关的方法
- 格式:docx
- 大小:15.80 KB
- 文档页数:2
判断向量组线性相关性的若干方法李德琼, 谢小良, 王仲梅(湖南工商大学 数学与统计学院, 湖南 长沙 410205)摘 要: 向量组的线性相关性是线性代数理论中一个基本且重要的内容, 它与矩阵、向量空间等概念具有紧密的联系. 向量组线性相关性的判断方法是灵活多变的. 给出判断向量组线性相关性的若干方法, 并从不同的角度, 采用不同的方法判断向量组的线性相关性, 从而提高学生理解和应用知识的能力.关键词: 向量组; 线性相关; 线性无关; 判定方法中图分类号: O151.2 文献标识码: A 文章编号: 1672-5298(2021)01-0014-03Several Methods for Linear Correlation Judgment ofVector GroupsLI Deqiong, XIE Xiaoliang, WANG Zhongmei(School of Mathematics and Statistics, Hunan University of Technology and Business, Changsha 410205, China)Abstract : Linear interrelationship of a vector group is a basic and important context in linear algebra theory, and it is closely linked with matrix and vector space theory. As the methods of linear correlation judgment of a vector group are flexible and variable, several methods to solve linear correlation judgment problems are given. Moreover, based on the comparative analysis of various methods, students are able to promote and enhance comprehensive ability to solve problems.Key words : vector group; linear dependence; linear independence; judgment methods向量组的线性相关性[1~3]是线性代数学习的重点和难点, 向量组相关性的判断方法很多, 针对不同的问题可以采用不同的方法判断其线性相关性[4~6]. 本文针对向量组线性相关性的判定方法进行分析, 为广大学生学习线性代数理论提供参考.1 向量组线性相关性的定义及判断方法1.1 定义设n 维向量组为12,,,s ααα , 若存在一组不全为零的数12,,,s k k k 使得1122s 0s k k k ααα+++= , 则称向量组12,,,s ααα 是线性相关的; 若1122s 0s k k k ααα+++= 当且仅当120s k k k ==== , 则称向量组12,,,s ααα 是线性无关的.1.2 判断方法判断向量组线性相关性的常见方法有:(1) 利用定义判断(2) 利用齐次线性方程组的解判断若向量组12,,,s ααα 的分量都已知, 则可以12,,,s ααα 为系数建立齐次线性方程组11220s s x x x ααα+++= , 如果该方程组存在非零解, 则此向量组12,,,s ααα 线性相关; 反之, 若齐次线性方程组只有零解, 则此向量组线性无关.(3) 利用行列式判断当向量组中向量的个数和维数相等时, 此向量组可以构成一个方阵. 如果该方阵的行列式不等于零, 则此向量组线性无关; 反之, 线性相关.收稿日期: 2020-07-12基金项目: 湖南省教育厅优秀青年项目(19B313); 湖南省学位与研究生教育改革研究重点项目(2019JGZD077); 湖南省普通高校教学改革研究项目(HNJN-2020-0632)作者简介: 李德琼, 女,博士, 讲师. 主要研究方向: 图论及其应用第34卷 第1期 湖南理工学院学报(自然科学版) Vol.34 No.1 2021年3月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Mar. 2021第1期 李德琼, 等: 判断向量组线性相关性的若干方法 15(4) 利用矩阵的秩判断向量组12,,,s ααα 构成一个矩阵, 对该矩阵进行初等变换, 如果矩阵的秩等于向量组中向量的个数, 则向量组线性无关; 否则, 线性相关.(5) 一些特殊的简单判断方法① 包含零向量的向量组一定线性相关.② 向量组中向量的个数大于维数时, 向量组线性相关.③ 若向量组中有一个部分组线性相关, 则该向量组线性相关; 反之, 若向量组线性无关, 则其任意的部分组都线性无关.2 向量组线性相关性判断典型例题下面举例进行详细说明.例1 判断向量组1(1,1,1)α=, 2(1,1,0)α=, 3(0,0,1)α=, 4(1,0,1)α=的线性相关性. 解 方法一. 易知123400αααα--+=, 利用定义可知1234,,,αααα线性相关.方法二. 设未知量123,,x x x 和4x , 建立齐次线性组112233440x x x x αααα+++=, 则有124121340,0,0.x x x x x x x x ++=⎧⎪+=⎨⎪++=⎩显然, 1231,1,1,x x x ==-=-40x =是方程组的一组非零解, 故1234,,,αααα线性相关.方法三. 向量组1234,,,αααα构成矩阵12341101(,,,)11001011T T T TA αααα⎛⎫ ⎪== ⎪ ⎪⎝⎭. 对A 做初等变换将其化为阶梯形矩阵:110111011100011010110001A ⎛⎫⎛⎫ ⎪ ⎪=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.所以矩阵A 的秩()3R A =, 矩阵A 的秩小于向量组中向量的个数, 故向量组1234,,,αααα线性相关. 方法四. 向量组中有4个向量, 而向量的维数是3, 向量的个数大于维数, 故向量组1234,,,αααα线性相关.例2 若4维向量组1234,,,αααα线性无关, 判断向量组112223,βααβαα=+=+, 334,βαα=+441βαα=+的线性相关性.解 方法一. 设存在常数1234,,,k k k k , 使得112233440k k k k ββββ+++=, 则有141122()()k k k k αα++++ 233344()()0.k k k k αα+++= 由1234,,,αααα线性无关, 得141223340,0,0,0.k k k k k k k k +=⎧⎪+=⎪⎨+=⎪⎪+=⎩ 显然, 12341,1,1,1k k k k ==-==-是方程组的一组非零解. 因此, 向量组1234,,,ββββ线性相关.方法二. 由于1234123410011100()()01100011B AP ββββαααα⎛⎫⎪⎪=== ⎪⎪⎝⎭,16 湖南理工学院学报(自然科学版) 第34卷向量组1234,,,αααα线性无关, 故矩阵A 可逆. 而||0P =, 即矩阵P 不可逆. 于是有矩阵B 不可逆, 即矩阵B 的秩小于4, 所以向量组1234,,,ββββ线性相关.从以上两道典型例题的多种解法中可以看出, 在解题过程中, 应注重知识的前后联系, 从不同角度分析比较, 选取最优解题方法.参考文献:[1] 王萼芳, 石生明. 高等代数[M]. 北京: 高等教育出版社, 2003 [2] 张禾瑞, 郝鈵新. 高等代数[M]. 北京: 高等教育出版社, 2007[3] 同济大学数学系. 工程数学线性代数[M]. 北京: 高等教育出版社, 2007 [4] 陈雪梅. 学生怎样理解向量的线性相关性[J]. 数学教育学报, 2007, 2(16), 64~67 [5] 李晓颖. 浅谈如何判断一组向量线性相关[J]. 中国校外教育, 2012 (6): 79+131 [6] 张沛华. 判定向量组线性相关性的若干方法[J]. 教育教学论坛, 2013 (19): 167~168(上接第6页)证明 注意到关于s 的函数2(())(())a b x s b a b x s s αααααα+---+-在[,]x a b x +-上单调递减,2(())(())s a b x a b x s a s αααααα-+-+--在[,]a b x x +-上单调递增, 由推论2即可得证.参考文献:[1] Ostrowski A. Über die absolute abweichung einer differentiebaren funktion von ihren integralmittelwert[J]. Comment. Math. Helv, 1938, 10(1): 226~227 [2] Pompeiu D. Sur une proposition analogue au théorème des accroissements finis[J]. Mathematica, 1946, 22: 143~146[3] Dragomir S S. An inequality of Ostrowski type via Pompeiu’s mean value theorem[J]. Social Science Electronic Publishing, 2005, 6(3): Art 83.https:///publication/2107058[4] Khalil R, Horani M A, Yousef A, et al. A new definition of fractional derivative[J]. Journal of Computational and Applied Mathematics, 2014, 264(1):65~70[5] Abdeljawad, Thabet. On conformable fractional calculus[J]. Journal of Computational and Applied Mathematics, 2015, 279: 57~66[6] Iyiola O S, Nwaeze E R. Some new results on the new conformable fractional calculus with application using D’Alambert approach [J]. Progr. Fract.Differ. Appl, 2016, 2(2): 115~122[7] Pardalos P M, Rassias T M. Contributions in mathematics and engineering[M]. Berlin: Springer, 2016[8] Usta F, Budak H, Tunç T, et al .New bounds for the Ostrowski-type inequalities via conformable fractional calculus[J]. Arabian Journal of Mathematics,2018, 7(2): 317~328[9] Erden S, Sarikaya M Z. Pompeiu type inequalities using conformable fractional calculus and its applications[J]. RGMIA Res Rep Coll, 2017 (20): 1~12 [10] Sarikaya M Z. Some new integral inequalities via variant of Pompeiu’s mean value theorem[J]. Mathematica Moravica, 2015, 19(2): 89~95. [11] Popa E C. An inequality of Ostrowski type via a mean value theorem[J]. General Mathematics, 2007, 5(1): 93~100[12] Dragomir S S. Another Ostrowski type inequality via Pompeiu’s mean value theorem[J]. General Mathematics, 2013, 21(2): 3~15[13] Maria A A, Babos A, Sofonea F. The mean value theorems and inequalities of Ostrowski type[J]. Scientific Studies and Research, 2011, 21(1): 5~16[14] Sarikaya M Z, Budak, H. On an inequality of Ostrowski type via variant of Pompeiu’s mean value theorem[J]. Turkish Journal of Analysis and NumberTheory, 2014, 2(3): 80~84[15] Sarikaya M Z. On an inequality of Grüss type via variant of Pompeiu’s mean value theorem[J]. Pure and Applied Mathematics Letters, 2014 (2): 26~30 [16] Dragomir S S. Exponential Pompeiu’s type inequalities with applications to Ostrowski's inequality[J]. Acta Mathematica Universitatis Comenianae, 2015,84(1): 39~50[17] Dragomir S S. Inequalities of Pompeiu’s type for absolutely continuous functions with applications to Ostrowski’s inequality[J]. Acta MathematicaAcademiae Paedagogicae Nyiregyhaziensis, 2014, 30(1): 43~52[18] Acu A M, Sofonea F D. On an inequality of Ostrowski type[J]. J.Sci.Arts, 2011, 3(16): 281~287[19] Cerone P, Dragomir S S, Kikianty E. Ostrowski and Trapezoid type inequalities related to Pompeiu’s mean value theorem[J]. Journal of MathematicalInequalities, 2015, 9(3): 739~762[20] Dragomir S S. Some Grüss-type results via Pompeiu’s-like inequalities[J]. Arabian Journal of Mathematics, 2015, 4(3): 159~170。
向量组的线性相关性教案一、教学目标1. 理解向量组的线性相关的概念;2. 学会判断向量组线性相关的方法;3. 掌握向量组线性相关的性质和应用。
二、教学内容1. 向量组的线性相关的概念;2. 判断向量组线性相关的方法;3. 向量组线性相关的性质;4. 向量组线性相关的应用。
三、教学重点与难点1. 向量组的线性相关的概念及判断方法;2. 向量组线性相关的性质及其证明;3. 向量组线性相关在实际问题中的应用。
四、教学准备1. 教材或教学资源;2. 投影仪或黑板;3. 粉笔或教学软件。
五、教学过程1. 引入:通过实例引导学生思考向量组线性相关的概念,例如在社会经济数据分析中,如何判断一组数据是否存在线性关系。
2. 讲解:向量组的线性相关的概念,解释线性相关、线性无关的定义及判断方法。
3. 演示:通过投影仪或黑板,展示向量组线性相关的性质及其证明。
4. 练习:布置一些判断向量组线性相关的题目,让学生独立完成,并解答疑问。
5. 应用:结合实际问题,讲解向量组线性相关在解决问题中的重要性,如在优化问题、线性方程组求解等方面的应用。
7. 作业:布置一些有关向量组线性相关的练习题,巩固所学知识。
六、教学反思在课后对自己的教学过程进行反思,看是否达到了教学目标,学生是否掌握了向量组线性相关的概念和方法。
如有需要,可以对教学方法进行调整,以提高教学效果。
七、教学评价通过课堂讲解、练习题和实际应用,评价学生对向量组线性相关性的理解程度和应用能力。
鼓励学生积极参与课堂讨论,提高他们的思维能力和解决问题的能力。
八、教学拓展向量组的线性相关性在数学和其他领域有很多应用,可以引导学生进一步研究相关知识,如最小二乘法、线性规划等。
九、教学资源1. 教材或教学参考书;2. 相关学术论文或资料;3. 互联网资源。
十、教学时间根据课程安排,合理分配教学时间,确保学生充分理解向量组的线性相关性。
六、教学策略1. 案例分析:通过分析具体的案例,使学生更好地理解向量组的线性相关性。
线性相关性:如何判断向量组是否线性相关及其应用线性相关性:如何判断向量组是否线性相关及其应用2023年,随着科技的不断发展,线性代数在各行各业中的应用不断扩展,尤其是在数据科学、机器学习和人工智能领域中。
而线性相关性作为线性代数中的一个重要概念,在这些领域中也得到了广泛应用。
本文将重点讨论线性相关性的概念、判断方法和应用,以帮助读者更好地理解和使用线性相关性。
一、概念线性相关性是指向量组中存在线性关系,即其中至少存在一个向量可以表示为其它向量的线性组合的形式,或者说存在一个向量可以由其它向量线性表示。
具体地,对于向量组$V={\mathbf{v_1},\mathbf{v_2},\cdots,\mathbf{v_n}}$,若存在一个非零向量$\mathbf{v}$,满足$\mathbf{v}=\sum\limits_{i=1}^n c_i\mathbf{v_i}$,其中$c_i$为任意实数,则称向量组$V$是线性相关的,否则称其线性无关。
二、判断方法下面介绍两种判断向量组线性相关的方法,分别为行列式法和向量空间法。
1.行列式法行列式法是最常用的判断向量组线性相关的方法,其基本思想是求出向量组的行列式,如果其值为0,则向量组线性相关,否则其线性无关。
具体地,对于向量组$V={\mathbf{v_1},\mathbf{v_2},\cdots,\mathbf{v_n}}$,可以将其写成矩阵形式,即:$$ A=\begin{bmatrix} v_{11}&v_{12}&\cdots&v_{1n}\\v_{21}&v_{22}&\cdots&v_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ v_{n1}&v_{n2}&\cdots&v_{nn} \end{bmatrix} $$然后求出其行列式$|A|$,若$|A|=0$,则向量组$V$是线性相关的,否则其线性无关。
线性相关判断方法总结定义2.1.1 线性相关、线性无关\boldsymbol\alpha_1,\boldsymbol\alpha_2,\cdots,\boldsy mbol\alpha_m 是m个向量。
对于方程\lambda_1\boldsymbol\alpha_1+\lambda_2\boldsymbol\alph a_2+\cdots+\lambda_m\boldsymbol\alpha_m=\boldsymbol0 ,若其有非零解(\lambda_1,\lambda_2,\cdots,\lambda_m)\not=\boldsymbol 0 ,则称 \alpha_1,\alpha_2,\cdots,\alpha_m 线性相关;若其只有唯一解(\lambda_1,\lambda_2,\cdots,\lambda_m)=\boldsymbol0 ,则称\boldsymbol\alpha_1,\boldsymbol\alpha_2,\cdots,\boldsy mbol\alpha_m 线性无关。
特别地, \boldsymbol0 向量和任意向量线性相关。
二、线性相关、无关的性质定理2.1.1\boldsymbol\alpha_1,\boldsymbol\alpha_2,\cdots,\boldsy mbol\alpha_m 线性相关 \iff 显然,其中必有某个向量是其它向量的线性组合。
定理2.1.2\boldsymbol\alpha_1,\boldsymbol\alpha_2,\cdots,\boldsy mbol\alpha_m 线性相关 \iff 其中必有某个向量是它前面的向量的线性组合。
推论2.1.1\boldsymbol\alpha_1,\boldsymbol\alpha_2,\cdots,\boldsy mbol\alpha_m 线性无关 \iff 其中任何一个向量都不是它前面的向量的线性组合。
浅议向量组线性相关性的判别方法作者:王星星贾会芳来源:《速读·下旬》2017年第12期摘要:向量组的线性相关性是《线性代数》的重要内容,也是考研必不可少的一部分。
行列式的值、矩阵的初等变换、齐次线性方程组的解等理论都可用于判别向量组的线性相关性,本文总结了判别向量组线性相关性的几种方法,并给出一些典型例子。
关键词:向量组;线性相关性;判别方法向量组的线性相关性是线性代数的重要内容,它与行列式、矩阵、线性方程组的解等都有着紧密的联系。
由于其概念比较抽象,以致向量组的线性相关性判定成了一大难题。
1相关结论法下面的结论简单易懂,是判别向量组线性相关性的最直接方法。
结论1:单个零向量线性相关,单个非零向量线性无关。
结论2:[α1,α2],线性相关的充要条件是[α1,α2]的分量对应成比例。
结论3:含零向量的向量组必线性相关。
结论4:若向量组[α1…,αr]线性相关,则向量组[α1…,αrαr+1…,αm](m>r)线性相关;若向量组线性无关,则其任意的部分组线性无关。
结论5:当m>n时,则n维向量组[α1,α2…,αm]必线性相关;特别n+1个n维向量组必线性相关。
结论6:向量组[α1,α2…,αm](m≥2)线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示。
结论7:若向量组线性无关,则对其中每个向量在相同位置任意添加多个分量后所得向量组仍线性无关(无关组添加分量仍无关)。
例1:判别向量组[α1=2,3,4,1,α2=(-2,1,-1,4)T,α3=(4,-6,1,2)T,α4=(9,7,-2,1)T,α5=(-5,-4,-2,0)T]的线性相关性。
解:由结论5知,5个四维向量一定是线性相关的。
2定义法利用定义来判别时,只要令[k1α1+k2α2+…+kmαm=0],如果存在不全为零的数[k1,k2…,km]使得等式成立,则向量组[α1,α2...,αm]是线性相关的,否则称它是线性无关的。
交流Experience ExchangeDI G I T C W 经验262DIGITCW2019.05定义:给定一个向量组I ,若存在m 个不全为零的数,使得成立,则称向量组线性相关。
否则,称向量组线性无关。
等价定义:若向量组I 中至少有一个向量能由其余的向量线性表出,则该向量组线性相关。
给出任意一个向量组,判断其线性相关性,有以下几种判定方法:(1)包含零向量的向量组必线性相关。
若,则有,所以向量组线性相关。
(2)只含有一个向量的向量组线性相关该向量是零向量。
“”若,有,所以α线性相关。
“”若线性相关,则存在,使得,得到。
(3)含有两个向量的向量组线性相关它们的对应分量成比例。
“”若线性相关,存在不全为零的数,使得成立。
假设,则有,故对应分量成比例。
“”若对应分量成比例,一定存在数,使得或者,则有线性相关。
例1:对应分量不成比例,所以向量组线性无关。
(4)单位向量组必线性无关。
由于,有,所以单位向量组线性无关。
(5)向量组的向量个数>向量维数,必线性相关。
任意一个向量都可以由单位向量线性表出,即有下,又因为单位向量组是线性无关的,由等价定义可得,该向量组必线性相关。
判断一个向量组是否线性相关等价于判断一个齐次线性方程组是否有非零解,令向量组中向量的维数等于方程的个数,向量的个数等于方程中未知量的个数,即可构成一个齐次线性方程组。
例2:讨论的线性相关性。
解:由向量方程,可以得到齐次线性方程组由于齐次线性方程组系数矩阵A 的秩,故该齐次线性方程组有非零解,即不全为零,所以向量组线性相关。
(6)向量组的向量个数 向量维数时,判断对应的齐次线性方程组是否有非零解,只需要根据其系数行列式和系数矩阵来判定即可,故有以下两种判定方法:方法一:以各向量为列向量组成行列式D ,方法二:以各向量为列向量组成矩阵A ,进行初等行变换,化为行阶梯形矩阵,例3:讨论向量组,,的线性相关性。
解:由向量方程,可以得到齐次线性方程组所以向量组线性相关。
V ol .32N o.5M ay 2016赤峰学院学报(自然科学版)J our nalofChi f eng U ni ver s i t y (N at ur alSci ence Edi t i on )第32卷第5期(上)2016年5月向量组线性相关与线性无关的判定方法侯雯昕(华东师范大学经济与管理学系,上海200062)摘要:向量组的线性相关性是线性代数理论的基本概念,它与向量空间、子空间等概念有密切关系,同时在解析几何以及常微分方程中有广泛应用.本文主要研究的是向量组线性相关性的判定方法,包括利用线性相关性的定义、行列式的值、矩阵的秩及齐次线性方程组的解等判定向量组的线性相关性,并比较了几种不同判定方法的适用条件.关键词:向量组;线性相关;线性无关;行列式;矩阵中图分类号:O 151.2文献标识码:A文章编号:1673-260X (2016)05-0004-02向量组的线性相关与线性无关的判定较难理解和掌握,实际上,向量组的线性相关与线性无关是相对的,只要掌握了线性相关的判定,线性无关的判定也就没有问题了.因此,本文主要论述了向量组的线性相关性的几种判定方法.1线性相关及相性无关的概念及性质1.1定义设有n 维向量组a 1,a 2,…,a n ,如果存在一组不全为零的数k 1,k 2,…,k n 使k 1a 1+k 2a 2+…+k n a n =0成立,则称向量组a 1,a 2,…,a n 线性相关;如果仅当k 1,k 2,…,k n全为0时,上式k 1a 1+k 2a 2+…+k n a n =0才成立,则称向量组a 1,a 2,…,a n 线性无关.1.2性质由向量组的概念易知向量组的线性相关性具有以下简单性质:(1)含有零向量的向量组线性相关.(2)若单个向量a ≠0,则向量组是线性无关的;相反,则向量组线性相关.(3)含有n+1个向量的n 维向量组必定线性相关.(4)向量组中一部分向量线性相关,则该向量组线性相关;若向量组线性无关,则其任一部分向量组线性无关.因此,一个向量组不是线性相关就是线性无关,为了更好的理解线性相关和线性无关,下面列出它们之间的不同点.(1)定义不同:线性相关的向量组是,存在不全为零的一组数k 1,k 2,…,k n 使k 1a 1+k 2a 2+…+k n a n =0成立而线性无关的向量组,只有当k 1=k 2=…=k n =0,才有k 1a 1+k 2a 2+…+k n a n =0成立.(2)线性表示问题:线性相关向量组中至少有一个向量能由其余n-1个向量线性表示;而线性无关的向量中任何一个向量都不能由其余n-1个向量线性表示.(3)与线性方程组的关系:若a 1,a 2…a n 线性相关,则存在不全为零的数x 1,x 2,…,x n ,使a 1x 1+a 2x 2+…+a n x n=0,即[a 1,a 2,…,a n]x 1x 2x n⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥=0或A X =0有非零解;而线性无关,则是A x=0只有零解.由此也可以看出研究向量的线性相关与方程组有着直接的关系.2向量组线性相关性的判定2.1利用定义法判定这是判定向量组的线性相关的基本方法,即给定向量组A :a 1,a 2,…,a n 如果存在不全为零的数k 1,k 2,…,k n ,使得k 1a 1+k 2a 2+…+k n a n =0成立,则称向量组A 是线性相关的.否则,如果不存在不全为零的数k 1,k 2,…,k n ,使得k 1a 1+k 2a 2+…+k n a n =0成立.也就是说,只有当k 1,k 2,…,k n 全为零,才有k 1a 1+k 2a 2+…+k n a n =0,则称向量组A 是线性无关的.例如,证明向量组β1=α1+α2,β2=α2+α3,β3=α3+α4,β4=α4+α1线性相关,则需要证明设存在4个数k 1,k 2,k 3,k 4,使得k 1β1+k 2β2+k 3β3+k 4β4=0.因此需将β1=α1+α2,β2=α2+α3,β3=α3+α4,β4=α4+α1代入上式有:k 1(α1+α2)+k 2(α2+α3)+k 3(α3+α4)+k 4(α4+α1)=0,即收稿日期:2016-03-234--. All Rights Reserved.(k 1+k 4)α1+(k 1+k 2)α2+(k 2+k 3)α3+(k 3+k 4)α4=0,取k 1=k 3=1,k 2=k 4=-1,则有k 1β1+k 2β2+k 3β3+k 4β4=0,由线性相关性的定义可知,向量组β1,β2,β3,β4线性相关.2.2利用齐次线性方程组的解判定对于各分量都给出的向量组a 1,a 2,…,a n ,若以A =[a 1,a 2,…,a n ]为系数矩阵的齐次线性方程组A X =0有非零解则此向量组a 1,a 2,…,a n 是线性相关的;若以A =[a 1,a 2,…,a n ]为系数矩阵的齐次线性方程组A X =0只有零解,则此向量组a 1,a 2,…,a n 是线性无关的.例如,判断x 1=(-1,1,1),x 2=(-2,1,2),x 3=(-1,2,-1)的线性相关性.需要令k 1x 1+k 2x 2+…+k n x n =0,即:将三组值代入后解方程组,可得k 1=0,k 2=0,k 3=0,故x 1,x 2,x 3是线性无关的.2.3利用矩阵的秩判定设向量组A :a 1,a 2,…,a m 是由m 个n 维列向量所组成的向量组,则向量组A 的线性相关性可由向量组A 所构成的矩阵A =(a 1,a 2,…,a m )的秩的大小来进行判定.(1)当R (A )=m 时,则向量组A :a 1,a 2,…,a m 是线性无关的;(2)当R (A )<m 时,则向量组A :aa 1,a 2,…,a m 是线性相关的.2.4利用行列式的值来判定(1)若向量组A :a 1,a 2,…,a m 是由m 个m 维列向量所组成的向量组,且向量组A 所构成的矩阵A =(a 1,a 2,…,a m ),即A 为m 阶方阵,则有:①当|A |=0时,则向量组A :a 1,a 2,…,a m 是线性相关的;②当|A |=0时,则向量组A :a 1,a 2,…,a m 是线性无关的.(2)若向量组A :a 1,a 2,…,a m 的个数m 与维数n 不同时,则有:①当m >n 时,则向量组A :a 1,a 2,…,a m 是线性相关的;②当m <n 时,转化为上述来进行判定,即选取m 个向量组成的m 维向量组,若此m 维向量组是线性相关的,则添加分量后,得到的向量组也是线性相关的.2.5利用反证法判定有些题目中,直接证明结论常常比较困难,而从结论的反面入手却很容易推出一些与已知条件或已知的定义、定理、公理相悖的结果,从而说明原结论成立.例如,向量组A :a 1,a 2,…,a m 中任一向量a i 不是它前面i -1个向量的线性组合,且a i ≠0,证明向量组A :a 1,a 2,…,a m 是线性无关的.可用反证法证明,假设向量组A :a 1,a 2,…,a m 线性相关,则存在不全为零的m 个数k 1,k 2,…,k m ,使得k 1a 1+k 2a 2+…+k m a m =0.由此可知,k m =0,否则由上式可得a m =k 1k m a 1-k 2k m a 3-…-k m -1k ma m -1即a m 可由它前面m -1个向量线性表示,这与题设矛盾,因此k m =0.从而有k 1a 1+k 2a 2+…k m -1a m -1=0.同理可得k m -1=k m -2=…=k 3=k 2=0,最后得到k 1a 1=0因为a i ≠0,所以k 1=0,但这又与k 1,k 2…k m 不全为零矛盾.因此,向量组A :a 1,a 2,…,a m 线性无关.2.6利用向量组在线性空间中象的线性关系判定线性空间V 中向量组a 1,a 2,…,a r 线性相关的充要条件是它们的象σ(a 1),σ(a 2)…σ(a r )线性相关.因为由k 1a 1+k 2a 2+…+k r a r =0可得k 1σ(a 1)+k 2σ(a 1)+…+k r σ(a r )=00.进而有σ(k 1a 1+k 2a 2+…+k r a r )=0.2.7利用方程组法判定方程组法就是将向量组的线性相关性问题转化为齐次线性方程组的有无非零解的问题.对于各分量都给出的向量组a 1,a 2,…,a s 线性相关的充要条件是以a 1,a 2,…,a s 的列向量为系数矩阵的齐次线性方程组的有非零解;若齐次线性方程组只有零解,则向量组线性无关.3小结本文主要对向量组线性相关性的定义以及性质进行了分析,并且给出了一些判定方法,由于向量组的线性相关性是线性代数中一个基础和重点的问题,仅限于这些讨论是远远不够的,还有待我们作进一步的研究.———————————————————————参考文献:〔1〕张禾瑞.郝鈵新.高等代数.高等教育出版社,2007.130-270.〔2〕杨燕新.王文斌.关于向量组线性相关的集中判定.山西农业大学学报,2005(8):292-294.〔3〕李先富.胡劲松.判断向量组线性相关性的另外一种方法.四川理工学报,2005(8):94-95.〔4〕肖艾平.向量组线性相关性的几种判定方法.伊犁师范学院,2008(12):58-59.5--. All Rights Reserved.。
函数线性相关与无关的判断方法
1、显式向量组:将向量按列向量构造矩阵A,对A实施初等行变换,将A化成梯矩阵,梯矩阵的非零行数即向量组的秩向量组线性相关 <=> 向量组的秩<向量组所含向量的个数。
2、隐式向量组:一般是设向量组的一个线性组合等于0,若能推出其组合系数只能全是0,则向量组线性无关,否则线性相关。
函数
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B 和对应法则f。
其中核心是对应法则f,它是函数关系的本质特征。
函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。
之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
向量组的线性相关性与线性无关性在线性代数中,向量组是指由一组向量所组成的集合。
而向量组的线性相关性与线性无关性则是研究向量组内向量之间的关系,是线性代数中的重要概念之一。
一、线性相关性线性相关性是指存在一组不全为零的实数或复数使得向量组中的向量可以通过线性组合得到零向量。
换句话说,如果存在不全为零的实数或复数c1,c2,...,cn,使得c1v1 + c2v2 + ... + cnvn = 0,则称向量组v1,v2,...,vn是线性相关的。
举个例子来说,考虑一个二维向量组{(1, 2), (2, 4)},我们可以发现这两个向量是线性相关的,因为存在一个实数c,使得c(1, 2) + (2, 4) = (0, 0)。
实际上,这两个向量是共线的,它们的方向相同,只是长度不同。
二、线性无关性线性无关性是指向量组中的任意向量不能由其他向量线性表示出来。
换句话说,如果对于向量组v1,v2,...,vn中的任意一个向量vi,都不存在一组实数或复数c1,c2,...,cn(其中ci≠0),使得c1v1 + c2v2 + ... + cnvn = vi,则称向量组v1,v2,...,vn是线性无关的。
继续以上面的例子来说,考虑一个三维向量组{(1, 2), (2, 4), (3, 6)},我们可以发现这三个向量是线性相关的。
实际上,第三个向量可以由前两个向量线性表示出来:(3, 6) = 3(1, 2) + 0(2, 4)。
因此,这三个向量是线性相关的。
三、线性相关性与线性无关性的关系线性相关性与线性无关性是相互对立的概念。
如果一个向量组是线性相关的,那么它就不是线性无关的;反之亦然。
换句话说,线性相关性与线性无关性是两个互斥的概念。
在实际应用中,我们经常需要判断一个向量组的线性相关性或线性无关性。
这对于解方程组、求解特征值等问题都有着重要的意义。
四、判断线性相关性与线性无关性的方法判断一个向量组的线性相关性或线性无关性有多种方法,其中最常用的方法是通过求解线性方程组来判断。
目录摘要: (I)关键词: (I)Abstract (II)Keywords: (II)1.前言 (1)2.预备知识 (1)2.1线性相关性的概念及性质 (1)2.1.1线性相关的概念 (1)2.1.2线性相关的性质 (2)3.向量组线性相关的判定方法 (3)3.1定义法 (3)3.2根据齐次线性方程组的解进行判定 (4)3.3利用矩阵的秩进行判定 (5)3.4利用行列式值进行判定 (6)3.5反证法 (7)3.6 数学归纳法 (7)3.7用线性变换的性质进行判定 (8)3.8利用朗斯基行列式来判定 (10)4.结束语 (11)参考文献 (12)致谢 (13)向量组的线性相关性的判定方法浅析摘要:本文总结综述了向量组线性相关性的判定方法,并阐述了不同判定方法适用的条件.关键词:线性相关;线性无关;判定方法.Several Methods of Judging the Linear Dependence of A VectorGroup is analysedAbstract:This article summarizes the judging methods of vector linear correlation, and expounds the different methods applicable conditions.Keywords:linear correlation; linear independence; judging methods .1.前言向量组的线性相关性在线性代数中起到贯穿始终的作用.线性相关性这个概念在许多数学专业课程中都有体现,如微分几何,高等代数和偏微分方程等等.它是线性代数理论的基本概念,它与线性空间(包括基,维数),子空间等概念有密切关系,同时在微分几何以及偏微分方程中都有广泛的应用.因此,掌握线性相关性这个概念有着非常重要的意义,也是解决其它问题的重要理论依据.向量组的线性相关与线性无关判定方法是非常灵活的。
判断向量组线性相关的方法
判断向量组线性相关的方法有:
1. 行列式判断法:将向量按列排成矩阵A,计算矩阵A的行
列式值det(A),若det(A)=0,则向量组线性相关;若det(A)≠0,则向量组线性无关。
2. 线性组合法:对向量组中的向量进行线性组合,若存在不全为零的系数使得线性组合等于零向量,则向量组线性相关;若只有全为零的系数才能使线性组合等于零向量,则向量组线性无关。
3. 列向量线性相关性判断法:将向量排成矩阵A,对矩阵A
进行行变换,化为梯形矩阵或行简化阶梯形矩阵。
在梯形矩阵或行简化阶梯形矩阵中,如果存在一个主元所在的列,列中存在非零元素,则向量组线性相关;如果不存在这样的列,则向量组线性无关。
4. 秩判断法:将向量组按列排成矩阵A,计算矩阵A的秩
rank(A),如果rank(A)小于向量的个数,则向量组线性相关;
如果rank(A)等于向量的个数,则向量组线性无关。
郑州航空工业管理学院毕业论文设计2011届数学与应用数学专业0711061 班题目向量组线性相关的几种证明方法姓名王守玉学号071106128 指导教师刘燕职称讲师2011 年 4 月19 日内容提要向量组的线性相关性在线性代数中是一块基石在它的基础上我们可以推导和衍生出其他许多理论.所以熟练地掌握向量组线性相关性的判定方法可以帮助我们更好的理解其他理论知识.本文从介绍向量组线性相关性的定义着手论述了若干种判定证明向量组线性相关的方法例如利用线性相关的定义、行列式的值、矩阵的秩、齐次线性方程组的解等知识运用于向量组的线性相关性的判定并比较了不同判定方法的适用条件及范围. 向量组线性相关性的证明理论作为数学知识中的基础理论在现实世界中有着深入的广泛应用.所以熟练地掌握向量组线性相关性的证明方法是很重要的. 关键词向量组线性相关行列式判定方法矩阵线性方程组等. Several Methods for Judging the Related Linearity of Vectors Group AuthorWang shou yu The guidance of teachersLiu yan Abstract The Related Linearity of Vectors Group in Linear Algebra is one cornstonethe basis of its derivation and derived from our many other theories.So skilled master linear vector to determine the relevance of the method helps us to better understand the other theories.This article from the Vector Groupintroduced the definition of a linear correlation to proceedand discussed a number of Vector Group to determine the method of linear correlation.For examplethe definition of the use of linear correlationthe value of the determinantrank of matrixhomogeneous solution of linear equations applied to vector groupssuch as knowledge of the linear correlation found.And compare different methods to determine the conditions and scope of the application. Vector Group to determine the linear correlation of theoretical knowledge as the basis of mathematical theoryin the real world with extensive use of depth.So it is very important to hold the methods for judging the related linearity of vectors group masterly. Key wordsVectors group Related dependence Determinant Judging method Matrix Solution of system of linear equations 目录第一章绪论……………………………………………………………1 第二章向量组线性相关性的定义及性质.…………………………2 第三章向量组线性相关性的证明方法…….……….………………6 3.1 利用定义法证明..………….……….…….……………….…6 3.2 利用向量组内向量之间的线性关系证明………….……………6 3.3 利用齐次线性方程组的解证明……………….………………7 3.4 利用矩阵的秩证明向量组线性相关性…………………………7 3.5 利用行列式的值来证明向量组线性相关性……………………9 3.6 方程组法………………………………………….…………11 3.7反正法…………………………………………….………12 第四章向量组线性相关的具体应用…………………………….……….13 结论与展望…………………………………………………..………16 致谢………………………………………………………………….…17 参考文献………………………………………………………………18 1 向量组线性相关的几种证明方法作者071106128 王守玉指导教师刘燕讲师第1章绪论线性相关性这个概念在数学专业许多课程中都有体现如解析几何、高等代数和常微分方程中等等.它是线性代数理论的基本概念它与向量空间包括基、微数、子空间等概念有密切关系同时在解析几何以及常微分方程中都有广泛的应用.因此掌握线性相关性这个概念有着非常重要的意义也是解决问题的重要的理论根据.向量组的线性相关与线性无关实际上可以推广到函数组的线性相关与线性无关. 在线性代数中向量组的线性相关性占到了举足轻重的作用.它可以将线性代数中的行列式、矩阵、二次型等知识联系在一起.若能熟练地掌握向量组的线性相关性则能更好的理解线性代数的各部分知识理清线性代数的框架做到融会贯通. 本文主要研究的是向量组线性相关性的判定方法从定义及性质下手熟悉了一些重要理论从而能在各领域中得到更好的运用.本文的第二章就是介绍了向量组线性相关的定义以及相关理论熟悉定义就能更清晰的掌握向量组线性相关性的本质.而本文的第三章主要给出了向量组线性相关的若干种判定方法比较了不同判定方法的优劣及适用范围并给出了一些详细证明附带了一些证明题和例题2 从而能更深刻地熟悉这些理论知识.第四章主要给出了向量组线性相关性的具体应用.而后面的就是结论与展望及一些参考文献还有一些附录关于引用的具体文献. 第2章向量组线性相关性的定义及性质定义2.1 给定向量组12:mAaaa如果存在不全为零的数12mkkk使1122mmkakaka0 则称向量组是线性相关的否则称它为线性无关. 注1说向量组12maaa线性相关通常是指2m的情形.但上述定义也适用于1m的情形.当1m时向量组只含有一个向量对于只含一个向量a的向量组当a0时是线性相关的当a0时是线性无关的.对于含2个向量12aa的向量组它线性相关的充分必要条件是12aa的分量对应成比例其几何意义是两向量共线.3个向量线性相关的几何意义是三向量共面. 注2向量组12:2mAaaam线性相关也就是在向量组A中至少有一个能由其他1m个向量线性表示.这是因为如果向量组A线性相关则有不全为0的数12mkkk使2-1式成立.因12mkkk不全为0不妨设10k于是便有12211mmakakak 即1a能由2maa线性表示. 如果向量组中有某个向量能由其余1m个向量线性表示不妨3 设ma能由11maa线性表示即有11m使112211mmmaaaa于是11111mmmaaa0 因为111m这m个数不全为0至少10所以向量组是线性相关的. 注3向量组的线性相关与线性无关的概念也可用于线性方程组.当方程组中有某个方程是其余方程的线性组合时这个方程就是多余的这时称方程组是线性相关的当方程组中没有多余方程就称该方程组线性无关. 向量组12:mAaaa构成矩阵12mAaaa向量组A 线性相关就是齐次线性方程组1122mmxaxaxa0即Ax0有非零解. 只有充分理解了向量组线性相关的定义我们才能找到不同的判定方法来判定某组向量是否是线性相关的并比较不同的判定方法的适用条件. 向量组线性相关的性质特征性质1向量组12:mAaaa线性相关的充要条件是向量组中至少有一个向量可以由其余1m个向量线性表示. 性质2对于各分量都给出的向量组12:mAaaa若以123mAaaaa为系数矩阵的齐次线性方程组Ax0有非零解向量则此向量组12:mAaaa是线性相关的.若以123mAaaaa为系数矩阵的齐次线性方程组Ax0只有零解向量则此向量组12:mAaaa 4 是线性无关的. 设向量组12:mAaaa是由m个n维列向量所组成的向量组则向量组的线性相关性可由向量组所构成的矩阵123mAaaaa的秩的大小来判定.即 1 当RAm时则向量组12:mAaaa是线性无关的. 2 当RAm时则向量组12:mAaaa是线性相关的. 这是经常用到的一种判定相关性的方法. 我们将向量12naaa几行排成矩阵12...TTTTnaaABa 为阶梯型矩阵则有定理2.1 向量组12naaa线性相关的充分必要条件是矩阵中出现零行. 证明阶梯型矩阵中出现零行矩阵TA的秩TRAnTRARAn齐次线性方程组1122nnaxaxax0有非零解向量组12naaa线性相关. 推论2.1 向量组12naaa线性无关的充分必要条件是矩阵B中不出现零行. 对矩阵TA进行初等行变换化为阶梯型矩阵B的过程其实就是对12naaa进行向量的线性运算.如果中出现零行则向量组12naaa中一定有某个向量能被其余的1n个向量线性表示从而知向量组12naaa 是线性相关的反之如果B中没有零行则向量组5 12naaa中没有任何一个向量能被其他的1n向量线性表示从而知12naaa是线性无关的. 推论2.2 如果向量组12naaa中含有零向量则向量组12naaa是线性相关的. 推论2.3 如果向量组12naaa中有个部分组12mkkkaaa其中1212iknimmn线性相关则向量组12naaa也一定线性相关. 性质3若向量组12:mAaaa是由m个n维列向量所组成的向量组且向量组A所构成的矩阵123mAaaaa即A为m阶方阵则1当0A时则向量组12:mAaaa是线性相关的. 2当0A时则向量组12:mAaaa是线性无关的. 若向量组12:mAaaa的个数m与维数n不同时则1当mn时则向量组12:mAaaa是线性相关的. 2当mn时转化为上述来进行判定即选取m个向量组成的m维向量组若此m维向量组是线性相关的则添加分量后得到的向量组也是线性相关的. 性质4对于各分量都给出的向量组12s线性相关的充要条件是以12s 的列向量为系数矩阵的齐次线性方程组有非零解若齐次线性方程组只有零解则向量组线性无关. 第三章向量组线性相关性的证明方法6 3.1 利用定义法证明这是证明向量组的线性相关性的基本方法.定义法既适用于分量没有具体给出的抽象向量组也适用于分量已经给出的具体向量组. 例3.1设112223334baabaabaa441baa证明向量组1234bbbb线性相关. 证明设存在4个数1234kkkk使得11223344kbkbkbkb0 将112223334441baabaabaabaa代入上式有112223334441kaakaakaakaa0 141122233344kkakkakkakka0取132411kkkk则有11223344kbkbkbkb0 由向量组线性相关的定义可知向量组1234bbbb线性相关. 3.2 利用向量组内向量之间的线性关系证明根据上一章讲到的性质1我们带入上一例题中比如取132411kkkk则1234bbbb即1b可由234bbb三个向量线性表示所以向量组1234bbbb线性相关.这种证明方法就是利用向量组内向量之间的线性关系进行证明的. 3.3 利用齐次线性方程组的解证明在应用定义法解一个齐次线性方程组需由该方程组是否有非零7 解来证明向量组的线性相关性.即应用定义法的同时就应用了齐次线性方程组的解进行了判定. 例3.2证明向量组1232105754137411aaa线性相关. 证明以123aaa为系数向量的齐次线性方程组是112233xaxaxa0即1231232312327305704405110xxxxxxxxxxx 利用矩阵的谐醯缺浠唤 匠套榈南凳 卣驛化为行阶梯型矩阵即1212122527315715727304404451115111rrrrrrA23324421171412415715715701717011 01104401100002424011000rrrrrrr 由行阶梯型矩阵可知23RA即齐次线性方程组有非零解所以向量组123aaa线性相关. 3.4 利用矩阵的秩证明向量组线性相关性上一章讲到的定理2.1和推论2.1推论2.2推论2.3充分的告诉了我们如何根据矩阵的秩证明向量组的线性相关性. 例3.3证明向量组123134752453246753aaa的线性无关. 证明将123aaa以行排成矩阵8 1231347513475245320231184675300001aAaa 矩阵A化为阶梯型矩阵后没有出现零行则123aaa中每个向量都不能被剩下的向量线性表示故由推论知向量组123aaa是线性无关的. 我们注意到定理中的矩阵TA 在初等行变换的过程中不论是否化成了阶梯型矩阵一旦出现零行就可以断定12naaa中必有一个向量能被其余剩下的n-1个向量线性表示从而知向量组12naaa线性相关. 例3.4证明向量组123413215224691127413595aaaa的线性相关. 证明将1234aaaa以行排成矩阵12341321513215224690408111274000001359513595aaAaa 所以矩阵A经过初等行变换后出现了零行则1234aaaa中必有一向量可以由其余的向量线性表示氏蛄孔?234aaaa是线性相关的. 例3.5设12311112313TTTaaat问当t为何值时向量组123aaa 线性相关并将3a表示为1a和2a的线性组合. 解利用矩阵的秩有123Aaaa11111111112301201213021005ttt 可见当5t时向量组123aaa线性相关并且有9 111101012012000000A所以3122aaa 利用矩阵的秩与利用齐次线性方程组的解进行判定的出发点不同但实质上是一样的都是要利用矩阵的初等行变换将相应的系数矩阵化简为行阶梯形矩阵从而求出向量组的秩即系数矩阵的秩然后再作出判定. 3.5 利用行列式的值来证明向量组线性相关性例3.6已知123111025247TTTaaa试讨论123aaa的线性相关性. 证明令123Aaaa则1021240157A所以123aaa线性相关. 行列式值的判定实质上是根据克莱姆法则判定以向量组作为系数向量的齐次线性方程组是否有非零解然后再对向量组的线性相关性作出判定所以能应用行列式值进行判定的向量组也可以应用矩阵的秩和齐次线性方程组是否有非零解的方法来进行判定. 例3.7已知向量组123:Aaaa是线性无关的且有112223331baabaabaa证明向量组123bbb线性无关. 证明一设有123xxx使得112233bxbxbx0即112223331xaaxaaxaa0整理为131122233xxaxxaxxa0 10 因为123aaa是线性无关的所以131223000xxxxxx由于此方程组的系数行列式10111020011故方程组只有零解1230xxx所以向量组123bbb线性无关. 证明二将已知的三个向量等式写成一个矩阵等式123123*********bbbaaa 记作BAK.设Bx0以BAK代入AKx0.因为矩阵A的列向量组线性无关所以可推知Kx0.又因为20K知方程Kx0只有零解0x所以矩阵B的列向量组123bbb线性无关. 证明三将已知条件可以写为123123*********bbbaaa 记做BAK因为0k所以k可逆由矩阵的秩的性质可知RARB且3RA由此3RB所以B的三个列向量线性无关. 例3.8已知3阶矩阵与三维列向量x满足323xxx且向量组2xxx线性无关. 1记2xxx求三阶矩阵使. 2求的值. 解1因为23223xxxxxxx 2000103011xxx然后可以得到000103011使得11 . 2因为得到了且2xxx而向量组2xxx是线性无关的.故P是可逆的.1所以10 3.6方程组法方程组法就是将向量组的线性相关性问题转化为齐次线性方程组的有无非零解的问题. 例3.11 证明向量组123211103202431的线性相关. 证明以123为系数的齐次线性方程组13123123132203402300kkkkkkkkkk 解得之1323kkkk即12311kkk是方程组的一组非零解故123线性相关. 例3.12 讨论12311112313t. 1 当t为何值时向量组123线性无关2 当t为何值时向量组123 线性相关3 当向量组123线性相关性将3表示为1和2的线性组合. 解设有实数123xxx使112233xxx0则得方程组123123123023030xxxxxxxxtx 其系数行列式111123513Dtt 1当5t时0D方程组只有零解1230xxx这时向量组123线性无关. 12 2当5t时0D方程组有非零解即存在不全为0的数123xxx使112233xxx0此时123线性相关. 3当5t时由111101123012135000有1323020xxxx 令31x得11x22x因此有12320从而3122. 3.7 反证法在有些题目中直接证明结论常常比较困难而从结论的反面入手却很容易推出一些与已知条件或已知的定义定理公理相悖的结果从而结论的反面不成立即结论成立.此方法是数学中常用的证明方法欲证命题真先假设命题假导出矛盾从而原命题得证. 例3.9设向量组12:mAaaa中任一向量ia不是它前面1i个向量的线性组合且0ia证明向量组12:mAaaa是线性无关的. 证明反证法假设向量组12:mAaaa线性相关则存在不全为零的m个数123mkkkk使得1122mmkakaka0 由此可知0mk否则由上式可得112121mmmmmmkkkaaaakkk 即ma可由它前面1m个向量线性表示这与题设矛盾因此0mk 112211mmkakaka0. 类似于上面的证明同理可得12320mmkkkk最后得到11ka0 因为ia0所以10k但这又与123mkkkk不全为0相矛盾. 因此向量组12:mAaaa是线性无关的. 13 第四章向量组线性相关的具体应用曲面造型是CAD/CAM、CG、计算机动画、计算机仿真、计算机可视化等众多领域的一项重要内容主要研究在计算机图像系统环境下对曲面的表示、设计、显示和分析.经过30多年的发展它已形成了以有理B样条曲面参数化特征设计和隐式代数曲面表示这两类方法为主体以插值、拟合、逼近这三种手段为骨架的几何理论体系. 在80年代后期参数曲面是CAD/CAM 曲面的主要表示方法尤其形成了NURBS 理论使它成为工业产品几何形状定义的唯一数学描述方法.但随着计算机设计的几何对象不断朝着多样化、特殊化、拓扑结构复杂化方向的发展参数曲面的局限性也越来越明显. 通常用参数曲面构造复杂拓扑结构的物体表面时需要对曲面片进行剪裁或直接在非规则的四边形网格上构造曲面片无论哪种情况都要考虑片与片之间的光滑拼接这是很困难的.对于影视动画领域的活动模型需要采用更加简便的方法来构造任意拓扑结构曲面. 细分方法正是在这种情况下迅速发展起来其基本思想是采用一定的细分规则在给定的初始网格中渐进地插入新的顶点从而不断细化出新的网格.重复运用细分规则在极限时该网格收敛于一个光滑曲面.细分曲面就是由初始控制网格按照一定的细分规则反复迭代而得到的极限曲面它具有以下优点适应任意拓扑结构、仿射不变、算法简洁通用高效、应用规模可大可小. 正是由于细分曲面有着传统参数曲面所不具备的优点现已广泛14 应用于计算机辅助几何设计、计算机动画造型及商业造型软件等领域.Loop细分网格具有局部性质.。
抽象向量组线性相关性的判定与证
明
抽象向量组线性相关性的判定与证明是一个非常重要的数学问题,它可以帮助我们在多维空间中找到特征和关系。
它能够有效地应用于多种不同类型的数据分析,包括图像处理、信号处理和数据挖掘。
抽象向量组线性相关性的判定与证明涉及许多相关的数学原理和方法,包括线性代数、矩阵分解、优化理论和凸优化等。
判定两个向量组之间是否存在线性关系的基本思想就是通过比较它们之间的“相关系数”来确定。
一般来说,判断两个向量组之间是否存在线性关系,要先将它们投影到一个相同的基础向量空间上,然后计算这两个向量组的“相关系数”。
如果相关系数的大小满足一定的条件,则可以判断出它们之间存在线性关系。
抽象向量组线性相关性的证明,需要借助相关矩阵的性质,即具有单位特征值的对称正定矩阵也是一个半正定矩阵。
在这种情况下,相关矩阵的特征值必须大于等于0,而且特征向量必须正交,这样才能保证两个向量组之间存在线性关系。
此外,还可以使用线性最小二乘法来求解向量组之间的线性关系。
该方法可以用来拟合多元线性函数,以最小化平方差,从而求解出最佳拟合参数。
通过对比拟合参数的大小,可以得出线性关系的判定结果。
最后,抽象向量组线性相关性的证明还可以通过引入Hilbert-Schmidt秩定理来完成。
Hilbert-Schmidt秩定理可以用来证明任意矩阵的特征值和特征向量的有序性,这是抽象向量组线性相关性的证明的重要准则之一。
总之,抽象向量组线性相关性的判定与证明是一个复杂的问题,涉及到许多数学原理和方法,但其正确的判断和证明对于研究多维空间中特征和关系具有重要的意义。
线性相关与无关的判断方法线性代数是数学中的一个重要分支,它研究的是向量空间和线性映射的理论。
在线性代数中,线性相关和线性无关是两个非常重要的概念,它们对于理解向量空间中向量的性质和关系具有重要意义。
本文将介绍线性相关与无关的判断方法,帮助读者更好地理解这一概念。
首先,我们来了解一下什么是线性相关和线性无关。
在向量空间中,如果存在一组向量,其中的某个向量可以表示为其他向量的线性组合,那么这组向量就是线性相关的。
换句话说,如果存在一组不全为零的标量,使得这些向量的线性组合等于零向量,那么这组向量就是线性相关的。
相反,如果不存在这样的标量,使得线性组合等于零向量,那么这组向量就是线性无关的。
接下来,我们将介绍线性相关与无关的判断方法。
首先是线性相关的判断方法。
对于给定的向量组,我们可以将这些向量排成一个矩阵,然后对这个矩阵进行行列式的计算。
如果计算结果不为零,那么这组向量就是线性无关的;如果计算结果为零,那么这组向量就是线性相关的。
这是线性相关判断的一种常用方法,也是比较直观的方法。
其次,我们来介绍线性无关的判断方法。
对于给定的向量组,我们可以将这些向量排成一个矩阵,然后对这个矩阵进行行阶梯形矩阵的变换。
如果经过变换后,矩阵中的主元个数等于向量的个数,那么这组向量就是线性无关的;如果主元个数小于向量的个数,那么这组向量就是线性相关的。
这是线性无关判断的另一种常用方法,同样也是比较直观的方法。
在实际应用中,我们经常会遇到需要判断向量组的线性相关与无关性质的情况。
通过掌握上述的线性相关与无关的判断方法,我们可以更加准确地判断向量组的性质,从而在解决实际问题时能够更好地运用线性代数的知识。
总之,线性相关与无关的判断方法是线性代数中的重要内容,它对于理解向量空间中向量的性质和关系具有重要意义。
通过本文的介绍,相信读者对于线性相关与无关的判断方法有了更清晰的认识,希望能够对读者在学习和应用线性代数的过程中有所帮助。
判断向量组线性相关的方法
1. 0=α⇔α线性相关
2. βα与的对应分量成比例⇔βα与线性相关
3.含有零向量的向量组是线性相关的
4.向量组m
ααα 21,)2(≥m 线性相关⇔该组中至少有一个向量可由其余的1-m 向量线性表出
5.部分相关则整体相关
6.设向量组r ααα 2
1,可由向量组s βββ 21,线性表出 (1)如果r>s,则
r ααα 21,线性相关; (2)如果r ααα 21,线性无关,则s r ≤
7.n+1个n 维向量必线性相关(个数大于维数)
8.该向量组的秩小于它所含向量的个数⇔向量组线性相关
9.n 个n 维的向量构成的行列式=0 ⇔该向量组是线性相关的
10.线性相关向量组中每个向量截短之后还相关
判断向量组线性无关的方法
1. 0≠α⇔α线性无关
2. βα与的对应分量不成比例⇔ βα与线性无关
3.向量组m
ααα 21,)2(≥m 线性无关⇔该组中任何一个向量都不能由其余的1-m 向量线性表出
4.整体无关则部分无关
5.线性无关向量组中每个向量加长之后还无关
6.该向量组的秩等于它所含向量的个数⇔ 向量组线性无关
7.n个n维的向量构成的行列式≠0 ⇔该向量组是线性无关的。