第五章线性系统状态反馈1
- 格式:doc
- 大小:505.50 KB
- 文档页数:12
复习重点
第一章控制系统的状态空间描述
1 控制系统状态空间表达式
2 由系统的物理模型建立状态空间表达式
3 由系统的微分方程建立状态空间表达式
4 离散时间系统的状态空间表达式
第二章线性控制系统的分析
1 线性定常系统的运动分析
2 状态转移矩阵
3 线性定常非齐次状态方程的解
4 线性离散时间系统的运动分析
5 线性连续时间系统的离散化
第三章线性控制系统能控性和能观测性
1 线性连续系统的能控性及判据
2 线性连续系统的能观测性及判据
3 对偶原理概念
4 线性系统的能控标准型和能观测标准型
5 线性定常离散系统能控性与能观测性判据
6 线性系统的能控性结构分解和能观测性结构分解
7 传递函数矩阵的(能控、能观测、最小)实现
第四章控制系统的稳定性分析
1 李亚普诺夫稳定性定义
2 李亚普诺夫稳定性基本定理
3 线性系统李亚普诺夫稳定性分析
4 非线性系统李亚普诺夫稳定性分析
第五章线性定常系统综合
1 状态反馈和输出反馈
2 闭环系统的极点配置
3 状态观测器的实现
i。
《现代控制理论》第5章习题解答5.1 已知系统的状态空间模型为Cx y Bu Ax x =+=, ,画出加入状态反馈后的系统结构图,写出其状态空间表达式。
答:具有状态反馈的闭环系统状态空间模型为:u Kx =−+v ()xA BK x Bv y Cx=−+=相应的闭环系统结构图为闭环系统结构图5.2画出状态反馈和输出反馈的结构图,并写出状态反馈和输出反馈的闭环系统状态空间模型。
答:具有状态反馈的闭环系统状态空间模型为u Kx =−+v ()xA BK x Bv y Cx=−+=相应的反馈控制系统结构图为具有输出反馈的闭环系统状态空间模型为u Fy =−+v ()x A BFC x Bv y Cx=−+=相应的反馈控制系统结构图为后案网 ww w.kh d5.3 状态反馈对系统的能控性和能观性有什么影响?输出反馈对系统能控性和能观性的影响如何?答:状态反馈不改变系统的能控性,但不一定能保持系统的能观性。
输出反馈不改变系统的能控性和能观性。
5.4 通过检验能控性矩阵是否满秩的方法证明定理5.1.1。
答:加入状态反馈后得到闭环系统K S ,其状态空间模型为()x A BK x Bv y Cx=−+=开环系统的能控性矩阵为0S 1[,][]n c A B BAB A B −Γ="闭环系统K S 的能控性矩阵为 1[(),][()()]n cK A BK B B A BK B A BK B −Γ−=−−"由于222()()()()(A BK B AB BKBA BKB A ABK BKA BKBK B)A B AB KB B KAB KBKB −=−−=−−+=−−−#以此类推,总可以写成的线性组合。
因此,存在一个适当非奇异的矩阵U ,使得()m A BK B −1,,,m m A B A B AB B −[(),][,]cK c A BK B A B U Γ−=Γ由此可得:若rank([,])c A B n Γ=,即有个线性无关的列向量,则n [(),]cK A BK B Γ−也有个线性无关的列向量,故n rank([(),])cK A BK B n Γ−=5.5 状态反馈和输出反馈各有什么优缺点。
现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1A Tz+T-1Bu,y=CTz+Du.T为任意非奇异阵(变换矩阵),空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φ(t)2.线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态x(t0),转移到指定的任一终端状态x(tf),称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.(2)T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为r*n维状态反馈系数阵或状态反馈增益阵2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵3.从输出到状态矢量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引入一个动态子系统来改善系统性能5.(1)状态反馈不改变受控系统的能控性(2)输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能(1)采用状态反馈对系统任意配置极点的充要条件是∑0完全能控(2)对完全能控的单输入-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件[1]∑0完全能控[2]动态补偿器的阶数为n-1(3)对系统用从输出到x 线性反馈实现闭环极点任意配置充要条件是完全能观7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输入-单输出系统,不能采用输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常工作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定(1)对系统采用状态反馈能镇定的充要条件是其不能控子系统渐近稳定(2)对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观子系统是输出反馈能镇定的,其余子系统是渐近稳定的(3)对系统采用输出到x 反馈实现镇定充要条件是其不能观子系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输入输出相互关联的多变量系统的实现每个输出仅受相应的一个输入所控制,每个输入也仅能控制相应的一个输出11.系统解耦方法:前馈补偿器解耦和状态反馈解耦12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u u y y 222++=+ ,试求其状态空间最小实现。
离散控制系统中的状态反馈控制在离散控制系统中,状态反馈控制是一种常用的控制策略。
它通过测量系统的状态并将其作为反馈信号,采取相应的控制动作来实现系统性能的优化。
本文将介绍离散控制系统中的状态反馈控制原理、设计方法和应用场景。
一、原理状态反馈控制的原理基于系统的状态空间表示。
离散控制系统的状态空间模型可以表示为以下形式:x(k+1) = Ax(k) + Bu(k)y(k) = Cx(k)其中,x(k)为系统在时刻k的状态向量,u(k)为控制输入向量,y(k)为输出向量;A、B、C为系统的矩阵参数。
状态反馈控制的目标是设计一个状态反馈矩阵K,使得控制输入u(k)与系统状态x(k)之间存在一定的线性关系。
即u(k) = -Kx(k)通过选择适当的状态反馈矩阵K,可以实现系统的稳定性、性能和鲁棒性等要求。
二、设计方法状态反馈控制的设计方法通常可以分为全状态反馈和部分状态反馈两种情况。
1. 全状态反馈全状态反馈指的是利用系统的全部状态信息进行控制。
在这种情况下,状态反馈矩阵K的每一个元素都与系统的状态变量相关。
全状态反馈可以实现系统的最优控制,但需要测量系统的全部状态变量,因此在实际应用中可能会受到限制。
2. 部分状态反馈部分状态反馈是指只利用系统的部分状态信息进行控制。
在这种情况下,状态反馈矩阵K的某些元素与系统的状态变量相关,而其他元素设为零。
部分状态反馈可以在减少测量需求的同时实现系统的稳定和性能优化。
状态反馈控制的设计方法通常采用基于稳定极点配置和线性二次型优化的思想。
具体的设计步骤包括:确定系统的状态空间模型,分析系统的稳定性和性能要求,选择适当的稳定极点位置,根据稳定极点位置计算状态反馈矩阵K,验证系统的性能和稳定性。
三、应用场景离散控制系统中的状态反馈控制在工业自动化、机器人控制、飞行器控制等领域有广泛的应用。
1. 工业自动化在工业自动化系统中,状态反馈控制可以实现对生产过程的精确控制。
例如,在温度控制系统中,通过测量系统的温度状态并进行反馈调节,可以实现对温度的精确控制,提高生产过程的稳定性和可靠性。
5-1 第五章 线性定常系统的状态反馈和状态观测器设计 闭环系统性能与闭环极点(特征值)密切相关,经典控制理论用输出反馈或引入校正装置的方法来配置极点,以改善系统性能。而现代控制理论由于采用了状态空间来描述系统,除了利用输出反馈以外,主要利用状态反馈来配置极点。采用状态反馈不但可以实现闭环系统极点的任意配置,而且还可以实现系统解耦和形成最优控制规律。然而系统的状态变量在工程实际中并不都是可测量的,于是提出了根据已知的输入和输出来估计系统状态的问题,即状态观测器的设计。
§5-1 状态反馈与闭环系统极点的配置 一、状态反馈 1、状态反馈的概念 状态反馈就是将系统的每一个状态变量乘以相应的反馈系数反馈到输入端与参考输入相加,其和作为受控系统的输入。 设SISO系统的状态空间表达式为: buAxx cxy
状态反馈矩阵为k,则状态反馈系统动态方程为: )(kxvbAxxbvxbkA)( cxy 式中: k为n1矩阵,即11nokkkk,称为状态反馈增益矩阵。
)(bkA称为闭环系统矩阵。
闭环特征多项式为)(bkAI。 可见,引入状态反馈后,只改变了系统矩阵及其特征值,cb、阵均无变化。
s1c
A
uyxx
k
vb
状态反馈系统结构图 5-2
【例5.1.1】已知系统如下,试画出状态反馈系统结构图。 uxx100200110010, xy004
解:xkkkvkxvu210 其中210kkkk称为状态反馈系数矩阵或状态反馈增益矩阵。
1333222142xyuxxxxxxx
说 明:如果系统为r维输入、m维输出的MIMO系统,则反馈增益矩阵k是一个mr维矩阵。即
mrrmrrmmkkkkkkkkkk
212222111211
2、状态反馈增益矩阵k的计算 控制系统的品质很大程度上取决于该系统的极点在s平面上的位置。因此,对系统进行综合设计时,往往是给出一组期望的极点,或者根据时域指标提出一组期望的极点。所谓极点配置问题就是通过对反馈增益矩阵k的设计,使闭环系统的极点恰好处于s平面上所期望的位置,以便获得期望的动态特性。 本节只讨论SISO系统的极点配置问题,因为SISO系统根据指定极点所设计的状态反馈增益矩阵是唯一的。
s141y2x2kvs12u3xs11x
1kok 5-3
定理5.1: 用状态反馈任意配置极点的充要条件是:受控系统可控。
证 明: (1)充分性: 设受控系统可控,则一定可通过线性变换(即xPx),将A、b化为可控标准型。
12101100001000010naaaaAPPA,
10001bPb
110nCPC 在变换后引入状态反馈增益矩阵k 110nkkkk xkvu 故变换后的状态反馈系统的动态方程为 vbxkbAx)( xcy 其中:
11221100100001000010nnkakakakakbA 闭环特征多项式为 )()(kbAIf
)()()(0011111kakakannnn 设闭环系统的期望极点为n,,,21
,则系统的期望特征多项式为
)())(()(21*nf *0*11*1aaannn 欲使闭环系统的极点取期望值,只需令 5-4
)()(*ff 即
*000*111*111akaakaakannn 只要适当选择110nkkk,就可以任意配置闭环极点。 (2)必要性 若受控系统不可控,必有状态变量与u无关,则110nkkkk,xkvu中一定有元素不存在,所以不可控子系统的特征值不可能重新配置。
按指定极点配置设计状态反馈增益矩阵k的一般步骤如下: (1)对给定可控系统),,(cbA,进行P变换,即xPx,化成可控标准型
ubxAx xcy 其中:APPA1,bPb1,cPc (2)导出在可控标准型下的闭环系统的特征多项式 )(f)()()(0011111kakakannnn (3)根据闭环系统极点的期望值,导出闭环系统的期望特征多项式 )(*f*0*11*1aaannn
(4)确定对于可控标准型下的状态变量x的反馈增益矩阵k )()(*ff )()()(1*11*10*0nnaaaaaak (5)把k化成对于给定状态变量x对应的k 1Pkk 5-5
【例5.1.2】已知SISO系统的传递函数为 )2)(1(10)(ssssG
试设计状态反馈增益矩阵k使闭环极点配置在-2,j1。 解:由于SISO系统的)(sG无零极点对消,故系统可控。可直接写出可控标准型。
uxx100320100010,xy0010
设状态反馈增益矩阵k为: 210kkkk 状态反馈系统的特征方程为 )()(bkAIf0)2()3(01223kkk 期望闭环极点对应的闭环系统期望特征方程为: )1)(1)(2()(*jjf046423
令)()(*ff,可得
43624210kkk 144210kkk 故144k
s110
2y2x
2kv
s13u3xs1
1x
1kok状态反馈系统结构图 5-6
分析说明: 在例5.1.2中,由于传递函数的实现一开始就采用了可控标准型,从而可以比较简单地计算出反馈增益矩阵k,对闭环系统进行极点配置。 但是从工程实际上看,可控标准型实现的状态变量的信息在物理上是很难采集的,如果要使设计出来的k能在实际系统中方便地建立起来,应该尽可能地选择那些其状态变量在物理上容易采集的实现作为系统的实现。
比如例5.1.2中,选择串联分解所得到的动态方程作为系统实现就较为合理。即 )2)(1(10)(ssssG2111110sss
原受控系统的动态方程为:
uxx100200110010, xy0010
设状态反馈增益矩阵k为: 210kkkk 状态反馈系统的特征方程为 )()(bkAIf0)2()3(021223kkkk 期望闭环极点对应的闭环系统期望特征方程为: )1)(1)(2()(*jjf046423
令)()(*ff,可得
436242210kkkk 134210kkk 故134k
s1101y2xs12u3xs11x
受控系统结构图 5-7 【例5.1.3】已知SISO系统的传递函数为 )2)(1()1(10)(sssssG
试研究采用状态反馈使闭环极点配置在-2,j1的可能性。 解:该SISO系统的传递函数)(sG存在零极点对消。 (1)若选择可控标准型实现(便不可观测),仍可以配置极点,方法步骤同【例5.1.2】。 (2)若选择可观测标准型实现(便不可控)
uxx01010310201000, xy100
设状态反馈增益矩阵k为: 210kkkk 状态反馈系统的闭环状态矩阵为
21001010310201000kkkbkA31010210101101010210
210
kkk
kkk
s1101y2x2kvs12u3xs11x
1kok
状态反馈系统结构图
结 论: 求解实际问题的状态反馈增益矩阵k时,没有必要象定理5.1证明那样去进行可控标准型的变换,只要先验证受控系统可控,并计算
)()(bkAIf及期望特征多项式)(*f,由)()(*ff,便
可确定状态反馈增益矩阵11nokkkk。