(完整word)MIMO非线性系统的反馈线性化初步理论
- 格式:doc
- 大小:338.02 KB
- 文档页数:11
自动控制原理MIMO系统知识点总结自动控制原理是控制工程的基础课程,而多输入多输出(MIMO)系统是其中重要的一部分。
MIMO系统是指系统存在多个输入和多个输出。
在本文中,将对MIMO系统的基本概念、特点、建模方法以及控制策略进行总结。
一、MIMO系统的基本概念和特点MIMO系统是指具有多个输入和多个输出的系统,在现实生活和工程领域中广泛存在。
相较于单输入单输出(SISO)系统,MIMO系统具有以下特点:1. 增强系统的性能:MIMO系统通过利用不同输入之间的互补性,可以提高系统的稳定性、鲁棒性和响应速度,从而增强系统性能;2. 增加信息传输量:通过同时在多个通道上进行传输,MIMO系统可以提高信息传输的效率,增加信道容量;3. 抑制干扰和提高抗干扰能力:MIMO系统可以通过在不同通道上选择合适的传输方式来抑制外界干扰,提高系统的抗干扰能力;4. 提高可靠性和容错性:MIMO系统可以在某些通道发生故障时,通过其他通道传输数据,从而提高系统的可靠性和容错性。
二、MIMO系统的建模方法针对MIMO系统的建模方法,常见的有时域建模和频域建模两种方法。
1. 时域建模:时域建模是指通过物理方程或差分方程来描述MIMO系统的动态响应。
常用的时域建模方法有状态空间模型和差分方程模型;2. 频域建模:频域建模是指通过将系统的输入和输出转换到频域来描述系统的特性。
常用的频域建模方法有传递函数模型和频率响应函数模型。
三、MIMO系统的控制策略针对MIMO系统的控制问题,常见的控制策略有:1. 反馈控制:反馈控制是指利用系统的输出信号与期望输出信号之间的差异来调节系统的输入信号,从而实现系统的稳定性和性能要求。
常用的反馈控制方法有PID控制器、状态反馈控制和输出反馈控制等;2. 前馈控制:前馈控制是指通过测量系统的输入信号和模型预测系统的输出信号,将预测误差作为前馈信号来补偿系统的输出误差,以提高系统的响应速度和鲁棒性;3. 最优控制:最优控制是指通过优化系统的性能指标来设计控制器,以实现系统的最佳控制效果。
自动控制原理反馈线性化知识点总结自动控制原理中,反馈线性化是一种重要的技术手段,用于对非线性系统进行线性化处理,以便于运用线性控制理论进行分析和设计。
本文将对反馈线性化的知识点进行总结。
一、反馈控制的基本原理反馈控制是指系统通过测量输出信号并与期望信号进行比较,从而产生控制信号作用于系统,使其输出信号趋近于期望值。
反馈控制可以提高系统的稳定性、精度和鲁棒性。
二、非线性系统的线性化1. 线性化的概念线性化是指通过近似处理使非线性系统在某一工作点附近表现出线性系统的特性。
线性化可以使非线性系统的分析和设计更加简化。
2. 线性化方法(1)泰勒级数展开法:通过对非线性函数进行泰勒级数展开,并保留一阶或二阶项,得到线性化后的系统模型。
(2)局部仿射变换法:通过适当的仿射变换,将非线性系统线性化为线性系统。
(3)偏微分方程法:对非线性系统的偏微分方程进行线性化处理,得到线性系统的模型。
三、反馈线性化的基本原理1. 概念反馈线性化是指通过设计反馈控制器,将非线性系统转化为线性系统。
2. 反馈线性化的步骤(1)选择工作点:选择一个具有良好控制性能的工作点作为线性化的基准。
(2)线性化建模:使用线性化方法得到系统在工作点附近的线性模型。
(3)设计反馈控制器:设计合适的反馈控制器,使得线性化后的系统具有期望的响应特性。
(4)验证和优化:通过仿真或实验验证线性化的效果,并对控制器进行优化。
四、反馈线性化的应用1. 飞行器控制在飞行器自动控制系统中,应用反馈线性化技术可以将飞行器的动力学模型线性化,从而进行姿态控制、航迹控制等任务。
2. 汽车悬挂系统控制反馈线性化技术可以将汽车悬挂系统的非线性特性线性化,实现对车身姿态的控制,提高汽车行驶的稳定性和舒适性。
3. 机器人控制在机器人的运动控制中,通过反馈线性化技术可以实现对机器人姿态和轨迹的精确控制,提高机器人的定位和导航能力。
五、反馈线性化的优缺点1. 优点(1)能够将非线性系统转化为线性系统,利用线性控制理论进行设计和分析。
第六章非线性系统的反馈线性化反馈线性化方法的基本思想是用反馈的方法,将非线性被控对象补偿成为一个具有线性特性的系统,然后利用线性系统理论进行控制系统设计。
基于微分几何的反馈线性化方法是一种精确线性化方法。
6.1 反馈线性化基本概念反馈线性化设计步骤是:(1)通过反馈的方法将非线性系统转化为线性系统,这个过程可以微分几何方法;(2)经过线性化处理后的系统进行设计。
与泰勒级数展开的近视线性化方法不同,它是建立在系统状态变换与非线性反馈基础上的一种精确方法。
它是大范围有效的,而不是仅仅局限于工作点附近。
1水槽的系统模型为()()2h d A h dhu t a ⎡⎤=−∫4()f B =+ xx u 考虑如下系统x是系统状态,f(x)是光滑向量场,u是控制输入,B是输入矩阵且可逆。
设跟踪轨迹为x d 。
=d e x x−定义跟踪误差=f()B d ex x u −− 主要思路是设计如下的补偿控制算法1=(f())d u Bxx ke −−+ =-eke 补偿后的误差动态方程为稳定例2 两关节机械手111212121112122212220H H qhq hqhq q g H H qhq qg ττ−−−⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦&&&&&&&&&&(6.1)5其中,[]12,Tq q =q 为关节角,[]12,Tττ=τ为关节输入。
12222221222221111211222222221212122221211122122122122cos cos sin cos cos()cos cos()c c c c c c c c c c H m l I m l l l l q I H m l I H H m l l q m l I h m l l q g m l g q m g l q q l q g m l g q q ⎡⎤=+++++⎣⎦=+==++=⎡⎤=+++⎣⎦=+表示成向量形式()(,)()H q qC q q q g q τ++=&&&&两边同乘以1H −,可变成仿射非线性系统(6.1)。
模糊CMAC神经网络用于MIMO非线性系统的反馈线性化张友安;陈善本;周绍磊;杨涤
【期刊名称】《控制理论与应用》
【年(卷),期】2000(017)001
【摘要】针对一类多输入多输出(MIMO)连续时间非线性系统,应用模糊CMAC神经网络,给出一种状态反馈控制器,用于使状态反馈可线性化的未知的非线性动态系统获得要求的跟踪性能.在很弱的假设条件下,应用李雅普诺夫稳定性理论严格地证明了闭环系统内的所有信号为一致最终有界(UUB).
【总页数】3页(P107-109)
【作者】张友安;陈善本;周绍磊;杨涤
【作者单位】海军航空工程学院301教研室·烟台,264001;哈尔滨工业大学现代焊接生产技术国家重点实验室·哈尔滨,150001;海军航空工程学院301教研室·烟台,264001;哈尔滨工业大学航天工程与力学系·哈尔滨,150001
【正文语种】中文
【中图分类】TP3
【相关文献】
1.CMAC神经网络用于一类不确定MIMO非线性rn系统的鲁棒自适应反馈线性化 [J], 杨旭;张友安;崔平远;邹经湘
2.模糊CMAC神经网络用于SISO非线性系统的反馈线性化 [J], 张友安;杨旭
3.模糊CMAC神经网络用于单输入输出非线性系统的鲁棒自适应反馈线性化 [J], 张友安;吴梅;关新平;崔平远
4.非线性系统的双线性化及线性化——Cr—反馈线性化方法 [J], 王海涛;王先来
5.基于CMAC神经网络的一类MIMO非线性系统的自适应反馈线性化 [J], 张友安;周绍磊;崔平远;杨涤
因版权原因,仅展示原文概要,查看原文内容请购买。
第三章 反馈线性化的初等理论3.1 局部坐标变换我们将按照循序渐进的方式来研究有关于非线性系统的反馈控制规律的一系列问题。
首先我们在本章讨论单输入单输出系统,然后在后面的章节中将其大多数结果推广到多输入多输出系统。
1·相对阶(或相对度)定义单输入单输出系统若写成下列形式(称仿射非线性系统)()()u x g x f x+= (1·1a ) ()y h x = (1·1b )则系统在点x 0上,说他具有相对阶r ,若下面两个条件成立 (对所有x 0的邻域上的x 及所有k<r-1)()()()()i L L h x ii L L h x g f k g f r =≠-0010注意在某些情况下相对阶不能被确定,事实上,当()L h x g ,()L L h x g f ,……函数序列的首函数不是一致为零(在x 0的邻域上),而在x=x 0点上又精确为零时就出现这种情况。
然而很清楚地,相对阶能够被确定的点的集合是系统(1·1)被定义的集合U 的一个稠密的开子集。
2·举例考虑状态空间的范德波尔振荡方程:()()()()⎪⎩⎪⎨⎧==⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=+=∙11222121012x x h y u x x x x u x g x f x ωμως 则:()()()[]()()()[]()()()()[]L L h x L h x hx g x L h x h x x f x x x L L h x L h x x g x g f g f g f f 02211001010010110==⋅=⎡⎣⎢⎤⎦⎥===*⎡⎣⎢⎤⎦⎥==⋅=⎡⎣⎢⎤⎦⎥=≠∂∂∂∂∂∂∴我们可以看到在x 0为任意值时,其邻域上均有:()()()()i L L h x ii L L h x g f g f 0010==≠可得出 r-1=1 ,则即 r=2因此系统在任何点x 0上均有相对阶为2,然而若输出函数为 ()y h x x ==sin 2,那么()L h x x g =cos 2。
第五章 MIMO 非线性系统的反馈线性化初步理论引言:对于多输入多输出系统仍可以用下列紧缩的形式的方程来描述:)()()(x h y u x g x f x=+=& (*) n R x ∈若输入的个数与输出的个数的数目相同时,可令)1( )](),...,([)()1()](),...,([)()()](),...,([)()1(),...,()1(),...,(11111⨯=⨯=⨯=⨯=⨯=m x h x h Col x h n x f x f Col x f m n x g x g x g m y y Col y m u u Col u m n m m m )(),...,(),(1x g x g x f m 均是光滑的向量场,)(),...,(1x h x h m 是光滑的函数,均定义在n R 的某个开集上。
5.1 向量相对阶和总相对阶:一个多变量非线性系统(*),在οx 处有向量相对阶},...,{1m r r 是指:(i) 0)(=x h L L i k f g j 对所有:111-<≤≤≤≤i r k m i m j οx x ∈∀的邻域(ii) m m ⨯矩阵⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=------)(..)(....)(..)()(..)()(11212111111221111x h L L x h L L x h L L x h L L x h L L x h L L x A m r f g m r f g r f g r f g r f g r f g m m m m m 在οx x =处是非奇异的。
注意:(1)该定义涵盖了SISO 系统。
(2)整数m r r ,...,1中的某个i r 是与系统第i 个输出)(x h i 有关的。
行向量: )](),...,([111x h L L x h L L i r f g i r f g i m i --,至少有一个元素是非零的,即行向量不是零向量,否则矩阵)(οx A 就是奇异的了。
所以对某个i y 来说至少有一个j u ,对这样的单输入单输出系统说来,它在οx 处的相对阶就是i r ,而对于其他可以选择的k u 说来,其在οx 处相应的相对阶如果存在的话,一定大于或等于这个i r 。
(3)i r 也是在0t t =时刻,从)(t y i 的微分中得到至少)(0t u 中一个分量的显式表示时所需要微分的次数。
(4)若系统在0x x =处有向量相对阶},...,{1m r r ,则行向量)(),...,(),()(),...,(),()(),...,(),(010*********11010121x h dL x h dL x dh x h dL x h dL x dh x h dL x h dL x dh m r f m f m r f f r f f m ---⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅是线性无关的。
证明该性质可以仿照单输入单输出的思路: 若i r r >1,m i ≤≤2,构造两个矩阵:))(),...,(),...,(),...,(),(),...,((121211121x h dL x dh x h dL x dh x h dL x dh Col Q m r f m r f r f m ---=))(),...,(),...,(),...,((111111x g ad x g ad x g x g Col P m r f r f m --=然后将QP 相乘,再对它的行重新排列后,矩阵就呈现一个块三角的结构,其对角线上的块组成)(x A 矩阵的行。
由)(x A 的非奇异性即可证明QP 的行是线性无关的,因而Q 的行也是线性无关的。
(5)当系统的输入数目大于输出数目时,向量相对阶定义中的条件(ii ),)(0x A 阵的非奇异性用该矩阵的秩等于它的行数(也就是输出通道的个数)来代替。
实际多输入多输出系统关键的是输入的数目。
所谓输出是看效果的地方,所以采集某个量、观察某个量都可以看作是输出。
(6)m r r r r +++=...21称为总相对阶,且有n r ≤。
5.2 局部坐标变换和标准形若系统在0x 处有向量相对阶},...,{1m r r ,称m r r r r +++=...21为总相对阶,则n r ≤。
设m i ≤≤1,则对于某一指定的i ,取下列映射:)()()()(21x h L x x h x i f i i i ==φφ. . .)()(1x h L x i r f i r i i -=φ当r 严格小于n 时,总可以找到另外r n -个函数)()...(1x x n r φφ+,使得)](),...,(),...,(),...,(),...,(),...,(),(),...,([)(1122111121x x x x x x x x Col x z n r mr m r r mφφφφφφφφφ+==在0x 处的雅可比矩阵是非奇异的,则)(x φ就有资格作坐标变换。
一般来说,附加的变换函数)(),...,(1x x n r φφ+是可以任选的,但是当分布},...,{1m g g Span G =在0x 处是对合的,则与SISO 情况相似,总可以找到)(),...,(1x x n r φφ+,使 0)(=x L i g j φmj n i r ≤≤≤≤+11 0x x ∈∀的邻域⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-r n m r m r m m z ηηξξξξηξξξηξM M M M M M 11111211....则利用上述坐标变换后,新坐标表示的系统方程可以分成(m+1)组:第1组:)()(13121212121111t dtd t dt d ξφξξφφξ=====••. . .1111111111111)()()()()(11111ξξξξ=⋅+=⋅+==∑∑==-•-•y u z a z b u x h L L x h L t j mj j j m j r f g r fr r r j其中)),((),()()),((),()(11111111111ηξφηξηξφηξ---====h L L a z a h L b z b r f gj j j r f注意前式j u 中所乘的系数)(111x h L L r f gj -正是)(x A 阵中的第),1(j 项。
第i 组:)()(3221t t i ii iξξξξ==•• . . .ii j mj ij i j m j ir f g i r fr ir i r y u z a z b u x h L L x h L i j i i ii11111)()()()(ξξξξ=⋅+=⋅+==∑∑==-•-•再令⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=+-)(...)(...11x x n r r n φφηηη对一般情况下:u P q u P q j mj j ),(),(),(),(1ηξηξηξηξη+=⋅+=∑=•若分布},...,{1m g g Span G =是对合的,又由此可得)(x i φ满足:0)(=x L i gj φ则该方程可简化成),(ηξηq =•将以上各组合并起来就得到多输入多输出系统的标准形。
5.3 零动态由输出零化的概念同样可以定义零动态。
由于输出及其各阶导数为零,可得:)(...)()(...0)(...)()(111111========--x h L x h L x h x h L x h L x h m r f m f m r ff m及∑==⋅+=mj j ij i r iu a b t yi 1)(0),0(),0()(ηη (共m 个)写成矩阵和向量的形式则有:0),0(),0(=+u A b ηη其中⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=)(...)()(11x h L x h L x b m r f r f m ),0(),(11ηφηξφ--==x )(x A 其中就是以前定义向量相对阶时的矩阵,所以:[]),0(,0()(1ηηb A t u --=)η是 ))(,0(0t q ηη=⋅在0)0(ηη=下的解。
对一般情况:[]),(),(),(),(1ηξηξηξηξηb A p q --=& 对零动态,则在0)0(,0)0(ηηξ==下求解。
5.4 参考输出复制问题若参考输出))(),...,(()(1t y t y Col t y mR R R = 其中⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=)(...)(...)()()(21t t t t t m R i R R R R ξξξξξ; ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=-)1()1()0(...)()()(ir iR iR iR iR y t y t y t ξ m i ≤≤1则类似推导后可得:(i) 初始时刻对准,即)0()0(R ξξ=,而内动态0)0(ηη=可以任取。
(ii) 取))(...)())(),(())((),(()()()(111⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+-=-t y t y t t b t t A t u m r mR r R R R ηξηξ其中η为下列方程的解:))(...)()),(()(),(()),(()),(()()(111⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+-⋅+=-⋅t y t y t b t A t p t q m r mR r R R R R R ηξηξηξηξη0)0(ηη=同样可以将解释为原系统的逆实现。
5.5 反馈线性化:当n r r r r m ==+++...21时,可以实现状态反馈精确线性化(此时没有内部动态)。
即取:[]ννβα+-=+=-)()()()()(1x b x A x x t u当n r r r r m <=+++...21时,可以实现输入输出精确线性化(此时有内部动态),但解的式子与上面的表达式一样。
5.6 输入输出解耦控制(或互不影响的控制) ⑴问题的提法: 给定一个非线性系统)(...)()()(111.x h y x h y u x g x f x m m mi ii ==+=∑=给定初始状态0x 及0x 的邻域0U ,找一个静态状态反馈控制律∑=+=mj j ij i i x x u 1)()(νβα使闭环系统∑∑∑===+⋅+=mj j mi ij i mi i i x x g x x g x f x 111.))()(()()()(νβα)(...)(11x h y x h y m m ==的每一输出i y ,m i ≤≤1,只受相应的输入i ν的影响,而与其他)(j i j ≠ν无关。