插补原理
- 格式:doc
- 大小:60.50 KB
- 文档页数:3
插补原理:在实际加工中,被加工工件轮廓形状千差万别,严格说来,为了满足几何尺寸精度要求,刀具中心轨迹应该准确地依照工件轮廓形状来生成,对于简单曲线数控系统可以比较容易实现,但对于较复杂形状,若直接生成会使算法变得很复杂,计算机工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合情况),这种拟合方法就是“插补”,实质上插补就是数据密化过程。
插补任务是根据进给速度要求,在轮廓起点和终点之间计算出若干个中间点坐标值,每个中间点计算所需时间直接影响系统控制速度,而插补中间点坐标值计算精度又影响到数控系统控制精度,因此,插补算法是整个数控系统控制核心。
插补算法经过几十年发展,不断成熟,种类很多。
一般说来,从产生数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补[26]。
脉冲增量插补和数据采样插补都有个自特点,本文根据应用场合不同分别开发出了脉冲增量插补和数据采样插补。
1数字积分插补是脉冲增量插补一种。
下面将首先阐述一下脉冲增量插补工作原理。
2.脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲方式输出。
这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调进给脉冲,驱动电机运动。
一个脉冲所产生坐标轴移动量叫做脉冲当量。
脉冲当量是脉冲分配基本单位,按机床设计加工精度选定,普通精度机床一般取脉冲当量为:0.01mm,较精密机床取1或0.5 。
采用脉冲增量插补算法数控系统,其坐标轴进给速度主要受插补程序运行时间限制,一般为1~3m/min。
脉冲增量插补主要有逐点比较法、数据积分插补法等。
逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。
这种方法原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式,插补器控制机床。
插补原理介绍3.2 插补原理概念引出:在‘画图板’下绘制垂直、⽔平、45°、⼀般⾓度的直线,圆弧。
找同学写出其加⼯代码。
并让其观察各直线的区别。
存在差别的原因就是插补所致,引出本节题⽬―――插补。
显⽰器显⽰原理与步进电机插补原理同出⼀辙。
插补的地位:插补是加⼯程序与电机控制之间的纽带。
3.2.1 插补概述1、插补定义⽤户在零件加⼯程序中,⼀般仅提供描述该线形所必须的相关参数,如对直线,提供其起点和终点坐标;对圆弧,提供起终点坐标、圆⼼坐标及顺逆圆的信息。
⽽这些信息不能满⾜控制机床的执⾏部件运动(步进电机、交直流伺服电机)的要求。
因此,为了满⾜按执⾏部件运动的要求来实现轨迹控制必须在已知的信息点之间实时计算出满⾜线形和进给速度要求的若⼲中间点。
这就是数控系统的插补概念。
可对插补概念作如下定义:是指在轮廓控制系统中,根据给定的进给速度和轮廓线形的要求,在已知数据点之间插⼊中间点的⽅法,这种⽅法称为插补⽅法。
每种⽅法⼜可能⽤不同的计算⽅法来实现,这种具体的计算⽅法称之为插补算法。
插补的实质就是数据点的密化。
由插补的定义可以看出,在轮廓控制系统中,插补功能是最重要的功能,是轮廓控制系统的本质特征。
插补算法的稳定性和算法精度将直接影响到CNC系统的性能指标。
所以为使⾼级数控系统能发挥其功能,不论是在国外还是国内,精度⾼、速度快的新的插补算法(软件)⼀直是科研⼈员努⼒突破的难点,也是各数控公司竭⼒保密的技术核⼼。
像西门⼦、Fanuc 数控系统,其许多功能都是对⽤户开放的,但其插补软件却从不对⽤户开放。
2、插补分类插补的形式很多,按其插补⼯作由硬件电路还是软件程序完成,可将其分为硬件插补和软件插补。
软件插补的结构简单(CNC装置的微处理器和程序),灵活易变。
现代数控系统都采⽤软件插补器。
完全硬件的插补已逐渐被淘汰,只有在特殊的应⽤场合和作为软件、硬件结合插补时的第⼆级插补使⽤;从产⽣的数学模型来分,有⼀次(直线)插补、⼆次(圆、抛物线等)插补及⾼次曲线插补等。
插补原理的应用1. 简介插补原理是指在计算机数控系统中,通过将点之间的两条轴运动的合成分解为两条轴的两个分量分别进行单轴插补运动,并在同一个点合成两条轴的两个分量,从而实现多轴的联动运动。
插补原理广泛应用于机械加工、自动化生产线等领域,提高了生产效率和产品质量。
2. 插补原理的作用插补原理的主要作用是将点之间的运动轨迹转化为机床运动轨迹,实现机床的自动控制和准确的加工。
具体来说,插补原理可以实现以下三个方面的作用:•坐标系转换:将绝对坐标系转换为机床工作坐标系,确保机床按照预设的路径进行运动。
•补偿控制:通过补偿误差,提高加工精度,保证加工质量。
•切削参数控制:根据加工要求,调整切削速度、进给速度等切削参数,实现不同工件的加工。
3. 插补原理的应用案例3.1 机械加工在机械加工领域,插补原理被广泛应用于数控加工中。
通过将机械零件的设计图纸转化为数控代码,实现机床的自动控制和精确加工。
具体应用包括:•铣削加工:通过插补原理,实现数控铣床在不同切削方向上的插补运动,完成复杂零件的加工。
•钻孔加工:通过插补原理,控制数控钻床在不同点上的垂直插补运动,实现孔径不同的钻孔加工。
3.2 自动化生产线在自动化生产线中,插补原理被用于控制机器人的运动。
通过将目标轨迹转化为机器人的轨迹,实现机器人的自动化运动。
具体应用包括:•可编程控制器(PLC)插补:通过插补原理,控制PLC内置的插补电路,实现机器人的复杂轨迹运动,完成装配、焊接等工作。
•跟踪控制插补:通过传感器捕捉目标位置,利用插补原理实现机器人跟踪运动,完成物料搬运、捡拾等任务。
3.3 三维打印在三维打印领域,插补原理被应用于控制打印头的运动。
通过插补原理,将三维模型的路径转化为打印头的运动路径,实现精确的打印。
具体应用包括:•FDM打印:通过插补原理,控制热塑性材料的喷嘴在三维空间中的插补运动,实现精确的材料叠加,完成打印过程。
•SLA打印:通过插补原理,控制光固化材料的光束在三维空间中的插补运动,实现精确的固化,完成打印过程。
插补
一、选择题
1.数控系统常用的两种插补功能是( A )
A直线插补和圆弧插补B直线插补和抛物线插补
C圆弧插补和抛物线插补D螺旋线插补和抛物线插补
2.数字增量圆弧插补法是用( B )逼近被插补的曲线。
A.切线
B.弦线
C.圆弧
D.双曲线
3.在数控机床的插补计算中,DDA是指( B )。
A.逐点比较插补法
B.数字积分插补法
C.数字增量插补法
D.最小偏差插补法
4.欲加工第一象限的斜线(起始点在坐标原点),用逐点比较法直线插补,若偏差
函数大于零,说明加工点在( B )。
A.坐标原点
B.斜线上方
C.斜线下方
D.斜线上
二、填空题
C系统中,一般都具有__直线_____和___圆弧____插补功能。
C系统中常用的插补方法中,脉冲插补法适用于以___步进______电机作为
驱动元件的数据系统;数字增量插补法(数据采样插补法)一般用于___直流伺服______和__交流伺服_______电机作为驱动元件的数控系统。
3.逐点比较法插补直线时,可以根据___插补循环数______与刀具应走的总步数是否相等来判断直线是否加工完毕。
4.常用的插补原理有(1)逐点比较法(2
(3
三、问答题
1.什么叫逐点比较插补法,一个插补循环包括哪几个节拍?
.答:逐点比较插补法是通过逐点比较刀具与所加工曲线的相对位置,确定刀具的进给方向,以加工出所需的零件廓形。
一个插补循环包括:偏差判断、进给、偏差计算、终点判断四个节拍。
5.画出数字积分圆弧插补法原理框图。
3.如图所示,AB是要加工的圆弧,圆弧的圆心在坐标原点(0,0),圆弧起点为A(4,0),终点为B(0,4),若脉冲当量为1,试用逐点比较法对该段圆弧进行插补,计算出需要的插补循环数和刀具移动每一位置的坐标,并在图上画出刀具的运动轨迹。
5.设加工第一象限逆圆弧,圆心为坐标原点,起点坐标(4,0),终点坐标(0,4)。
采用逐点比较法插补,计算插补过程并作走步轨迹图。
7.设加工第一象限直线,起点为坐标原点,终点坐标(5,3)。
1)采用逐点比较法插补,计算插补过程并作走步轨迹图2)采用数字积分插补法,设寄存器为3位,则经过8次累加后,X向和Y向分别溢出的脉冲数为多少?
2.如图所示,AB是要加工的圆弧,圆弧的圆心在坐标原点(0,0),圆弧起点为A(7,1),终点为B(5,5),若脉冲当量为1,试用逐点比较法对该段圆弧进行插补,计算出需要的插补循环数和刀具移动每一位置的坐标,并在图上画出刀具的运动轨迹。
2 .要加工圆弧,圆弧的圆心在坐标原点(0,0),圆弧起点为A(5,0),终点为B(0,5),若脉冲当量为1,试用逐点比较法对该段圆弧进行插补,计算出需要的插补循环数和刀具移动每一位置的坐标,并在图上画出刀具的运动轨迹。