插补原理
- 格式:doc
- 大小:55.00 KB
- 文档页数:5
因为插补运算是实时性很强的运算,若算法太复杂,计算机的每次插补运算的时间必然加长,从而限制进给速度指标和精度指标的提高。
3.插补方法的分类❑脉冲增量插补(行程标量插补)特点:✓每次插补的结果仅产生一个单位的行程增量(一个脉冲当量)。
以一个一个脉冲的方式输出给步进电机。
其基本思想是:用折线来逼近曲线(包括直线)。
✓插补速度与进给速度密切相关。
因而进给速度指标难以提高,当脉冲当量为10μm时,采用该插补算法所能获得最高进给速度是3-4 m/min。
✓脉冲增量插补的实现方法较简单,通常仅用加法和移位运算方法就可完成插补。
因此它比较容易用硬件来实现,而且,用硬件实现这类运算的速度很快的。
但是也有用软件来完成这类算法的。
✓这类插补算法有:逐点比较法;最小偏差法;数字积分法;目标点跟踪法;单步追综法等✓它们主要用早期的采用步进电机驱动的数控系统。
✓由于此算法的速度指标和精度指标都难以满足现在零件加工的要求,现在的数控系统已很少采用这类算法了。
❑数字增量插补(时间标量插补)❑特点:插补程序以一定的时间间隔定时(插补周期)运行,在每个周期内根据进给速度计算出各坐标轴在下一插补周期内的位移增量(数字量)。
其基本思想是:用直线段(内接弦线,内外均差弦线,切线)来逼近曲线(包括直线)。
插补运算速度与进给速度无严格的关系。
因而采用这类插补算法时,可达到较高的进给速度(一般可达10m/min以上)。
数字增量插补的实现算法较脉冲增量插补复杂,它对计算机的运算速度有一定的要求,不过现在的计算机均能满足要求。
这类插补方法有:数字积分法(DDA)、二阶近似插补法、双DDA插补法、角度逼近插补法、时间分割法等。
这些算法大多是针对圆弧插补设计的。
这类插补算法主要用于交、直流伺服电机为伺服驱动系统的闭环,半闭环数控系统,也可用于以步进电机为伺服驱动系统的开环数控系统,而且,目前所使用的CNC系统中,大多数都采用这类插补方法。
插补的原理插补是数控加工中的重要概念,它是指在机床进行加工过程中,根据加工轨迹的要求,通过控制机床的运动轴进行插补运动,从而实现复杂曲线的加工。
插补的原理是数控加工中的核心内容之一,下面将从插补的基本原理、插补的分类以及插补的应用等方面进行详细介绍。
首先,插补的基本原理是数控加工中的基础知识,它包括直线插补和圆弧插补两种基本插补方式。
直线插补是指机床在直线轨迹上进行插补运动,而圆弧插补则是指机床在圆弧轨迹上进行插补运动。
在数控加工中,插补运动是通过控制机床各个坐标轴的运动来实现的,通过对各个坐标轴的速度、加速度和位置进行合理的控制,可以实现复杂曲线的加工。
其次,插补可以根据其运动方式的不同进行分类,主要包括直线插补、圆弧插补、螺旋线插补等。
直线插补是最简单的插补方式,它是通过控制机床的各个坐标轴,使其在直线轨迹上进行插补运动。
圆弧插补则是在圆弧轨迹上进行插补运动,它需要通过对圆弧的半径、起点和终点等参数进行合理的控制。
螺旋线插补则是在三维空间中进行插补运动,它需要对螺旋线的半径、螺距、起点和终点等参数进行合理的控制。
不同的插补方式可以实现不同形状的曲线加工,从而满足不同加工要求。
最后,插补在数控加工中有着广泛的应用,它可以实现复杂曲线的加工,提高加工精度和效率。
在实际加工中,通过合理的插补运动,可以实现各种复杂曲线的加工,如汽车零部件、航空航天零部件、模具等领域的加工。
同时,插补运动还可以实现多轴联动,从而实现更加复杂的加工要求,如五轴联动加工、六轴联动加工等。
因此,插补在数控加工中具有非常重要的意义,它是实现复杂曲线加工的关键技术之一。
综上所述,插补是数控加工中的重要概念,它通过合理的运动控制,实现复杂曲线的加工。
插补的基本原理包括直线插补和圆弧插补,可以根据其运动方式的不同进行分类。
插补在数控加工中有着广泛的应用,可以实现各种复杂曲线的加工,提高加工精度和效率。
因此,深入理解插补的原理对于提高数控加工的质量和效率具有重要意义。
插补原理及控制方法插补原理是指在数控机床运动控制系统中,通过对多个轴同时进行定长或定角度的运动控制,实现复杂曲线的加工。
插补控制方法包括线性插补和圆弧插补两种。
一、线性插补线性插补是指在工件加工中,沿直线轨迹进行直线段的插补控制方法。
线性插补的原理是通过控制系统对多个轴的运动速度和方向进行精确控制,使得工件能够沿着设定的直线路径进行加工。
线性插补的控制方法包括点位控制和连续控制两种。
1.点位控制点位控制是将每个插补段分解成多个线性插补点,通过对每个点的坐标进行控制,实现工件的加工。
点位控制方式适用于工件形状简单、精度要求不高的情况下。
2.连续控制连续控制是通过对每个时间段内的轴位置进行插补计算,实现工件的连续运动。
此命令适用于工件形状复杂、精度要求较高的场景。
在连续控制中,通常使用插补算法进行计算,将每个时间段内需要插补的线性段分割成多个小段,并根据小段的长度和速度来确定每个小段的运动规律。
二、圆弧插补圆弧插补是指在数控机床加工中,通过对多个轴的运动进行控制,实现工件上圆弧曲线的加工。
圆弧插补的原理是通过对多个轴进行同步运动,控制圆弧路径的切线和加工速度,使得工件能够按照设定的半径和圆弧角度进行加工。
圆弧插补的控制方法包括圆心插补法和半径插补法。
1.圆心插补法圆心插补法是通过控制系统中的插补算法,计算每个时间段内轴的位置和速度,实现工件画圆弧的加工。
在圆心插补中,需要手动指定圆心的坐标位置和圆弧的半径、角度来实现加工。
2.半径插补法半径插补法是指通过在控制系统中指定圆弧的起点、终点和半径来实现工件圆弧的加工。
在半径插补中,插补算法会根据起始点和终点的位置,计算出圆心的位置和圆弧的角度,从而实现工件的加工。
总结:插补原理及控制方法是数控机床系统中非常重要的部分,通过对多个轴的运动进行精确控制,实现工件曲线轨迹的加工。
线性插补适用于直线段的加工,圆弧插补适用于曲线段的加工。
掌握插补原理及控制方法,对于数控机床加工精度的提高和加工效率的提高具有重要意义。
插补原理介绍范文插补原理是用来实现数控机床加工的基本原理,它是数控机床进行加工时控制运动轨迹和速度的核心机制。
以下是关于插补原理的详细介绍。
1.插补原理的基本概念插补原理是指根据数学模型和运动规划策略,通过计算机控制系统控制多个成分运动轨迹和速度的基本方法。
在数控机床加工中,常常需要进行直线插补、圆弧插补和螺线插补等运动,插补原理正是用来实现这些运动方式的关键。
2.插补原理的基本流程插补原理的基本流程包括坐标系转换、插值计算和控制指令生成等步骤。
首先,需要将加工对象的几何模型转换为机床坐标系下的坐标系,这样才能进行后续的数学计算。
然后,在插值计算中,根据加工轨迹的特点和要求,进行插值计算,得到每个时刻的位置和速度信息。
最后,根据计算结果,生成相应的控制指令,通过伺服系统控制机床的运动。
3.插补原理的数学模型插补原理的数学模型通常采用多项式函数来描述曲线的运动轨迹。
对于直线插补,可以使用线性函数或者高次多项式函数来进行描述。
而对于圆弧插补,通常采用二次多项式函数或者三次贝塞尔曲线来进行描述。
不同的数学模型能够更加准确地描述曲线的形状和运动轨迹,并且在实际应用中需要根据具体情况选取合适的模型。
4.插补原理的运动规划策略插补原理的运动规划策略是根据实际需要,通过数学计算得到加工路径和速度的最优解。
在运动规划中,需要综合考虑加工效率、精度要求、工件形状和加工工艺等因素,通过合理选择插补速度和运动路径,使得加工效果最好。
同时,还需要考虑机床本身的运动特性和限制条件,以便在满足加工要求的前提下尽可能提高机床的工作效率。
5.插补原理的实现方法插补原理的实现方法主要包括离散插值法和参数插值法两种。
离散插值法是将连续的曲线插值问题转化为离散点的插值问题,根据已知的离散点进行插值计算。
参数插值法则是根据给定的控制参数,通过数学计算得到曲线的运动轨迹。
离散插值法适用于简单的插值问题,而参数插值法适用于复杂的曲线插值问题。
插补原理:在实际加工中,被加工工件轮廓形状千差万别,严格说来,为了满足几何尺寸精度要求,刀具中心轨迹应该准确地依照工件轮廓形状来生成,对于简单曲线数控系统可以比较容易实现,但对于较复杂形状,若直接生成会使算法变得很复杂,计算机工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合情况),这种拟合方法就是“插补”,实质上插补就是数据密化过程。
插补任务是根据进给速度要求,在轮廓起点和终点之间计算出若干个中间点坐标值,每个中间点计算所需时间直接影响系统控制速度,而插补中间点坐标值计算精度又影响到数控系统控制精度,因此,插补算法是整个数控系统控制核心。
插补算法经过几十年发展,不断成熟,种类很多。
一般说来,从产生数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补[26]。
脉冲增量插补和数据采样插补都有个自特点,本文根据应用场合不同分别开发出了脉冲增量插补和数据采样插补。
1数字积分插补是脉冲增量插补一种。
下面将首先阐述一下脉冲增量插补工作原理。
2.脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲方式输出。
这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调进给脉冲,驱动电机运动。
一个脉冲所产生坐标轴移动量叫做脉冲当量。
脉冲当量是脉冲分配基本单位,按机床设计加工精度选定,普通精度机床一般取脉冲当量为:0.01mm,较精密机床取1或0.5 。
采用脉冲增量插补算法数控系统,其坐标轴进给速度主要受插补程序运行时间限制,一般为1~3m/min。
脉冲增量插补主要有逐点比较法、数据积分插补法等。
逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。
这种方法原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式,插补器控制机床。
逐点比较法既可以实现直线插补也可以实现圆弧等插补,它特点是运算直观,插补误差小于一个脉冲当量,输出脉冲均匀,速度变化小,调节方便,因此在两个坐标开环CNC系统中应用比较普遍。
但这种方法不能实现多轴联动,其应用范围受到了很大限制。
对于圆弧插补,各个象限积分器结构基本上相同,但是控制各坐标轴进给和被积函数值修改却不同,由于各个象限控制差异,所以圆弧插补一般需要按象限来分成若干个模块进行插补计算,程序里可以用圆弧半径作为基值,同时给各轴余数赋比基值小数(如R/2等),这样可以避免当一个轴被积函数较小而另一个轴被积函数较大进,由于被积函数较小轴位置变化较慢而引起误差。
4.2 时间分割插补是数据采样插补一种。
下面将首先阐述数据采样插补工作原理。
2.1 数据采样插补是根据用户程序进给速度,将给定轮廓曲线分割为每一插补周期进给段,即轮廓步长。
每一个插补周期执行一次插补运算,计算出下一个插补点坐标,从而计算出下一个周期各个坐标进给量,进而得出下一插补点指令位置。
与基准脉冲插补法不同是,计算出来不是进给脉冲而是用二进制表示进给量,也就是在下一插补周期中,轮廓曲线上进给段在各坐标轴上分矢大小,计算机定时对坐标实际位置进行采样,采样数据与指令位置进行比较,得出位置误差,再根据位置误差对伺服系统进行控制,达到消除误差使实际位置跟随指令位置目。
数据采样法插补周期可以等于采样周期也可以是采样周期整数倍;对于直线插补,动点在一个周期内运动直线段与给定直线重合,对于圆弧插补,动点在一个插补周期运动直线段以弦线逼近圆弧。
数据采样插补主要有:时间分割法、扩展DDA法、双DDA法等等。
位置控制方式经典分类点位控制,只关心如何快速准确地到达最终目标位置,而不管中间运动过程如何,因而无需联动也可以实现,如钻床钻孔定位过程。
2.连续控制,不同坐标间以固定比例,匀速或等间隔地以直线运行关系移动到最终目标位置,是一种最简单联动控制,如车床车锥面,或者铣床铣斜面。
3.轮廓控制,不同坐标间以确定非比例运动关系,沿着一个确定目标曲线或者曲面移动,直到最终完成,显然是需要联动控制,比如最简单圆车铣加工,复杂曲线车铣加工、以及高要求自由曲面铣削加工等。
直线插补是实现连续运动控制基本方法,也是多数数控系统实现复杂曲线、曲面加工基本小线段实现单元,因而本人认为,即便是以逐点比较法实现直线插补,也应属于联动控制,我们应当看到是稍微宏观一点直线运动本身,而不是微观点运算和执行细节。
什么是插补?试由直线的逐点比较工作节拍说明其插补过程:答:插补是在组成轨迹的直线段或曲线段的起点和终点之间,按一定的算法进行数据点的密化工作,以确定一些中间点。
从而为轨迹控制的每一步提供逼近目标。
逐点比较法是以四个象限区域判别为特征,每走一步都要将加工点的瞬时坐标与相应给定的图形上的点相比较,判别一下偏差,然后决定下一步的走向。
如果加工点走到图形外面去了,那么下一步就要向图形里面走;如果加工点已在图形里面,则下一步就要向图形外面走,以缩小偏差,这样就能得到一个接近给定图形的轨迹,其最大偏差不超过一个脉冲当量(一个进给脉冲驱动下工作台所走过的距离)。
什么叫直线插补?这个概念般是用在计算机图形显示,或则数控加工的近似走刀等情况下的. 以数控加工为例子一个零件的轮廓往往是多种多样的,有直线,有圆弧,也有可能是任意曲线,样条线等. 数控机床的刀具往往是不能以曲线的实际轮廓去走刀的,而是近似地以若干条很小的直线去走刀,走刀的方向一般是x和y方向.插补方式有:直线插补,圆弧插补,抛物线插补,样条线插补等所谓直线插补就是只能用于实际轮廓是直线的插补方式(如果不是直线,也可以用逼近的方式把曲线用一段段线段去逼近,从而每一段线段就可以用直线插补了).首先假设在实际轮廓起始点处沿x方向走一小段(一个脉冲当量),发现终点在实际轮廓的下方,则下一条线段沿y方向走一小段,此时如果线段终点还在实际轮廓下方,则继续沿y方向走一小段,直到在实际轮廓上方以后,再向x方向走一小段,依次循环类推.直到到达轮廓终点为止.这样,实际轮廓就由一段段的折线拼接而成,虽然是折线,但是如果我们每一段走刀线段都非常小(在精度允许范围内),那么此段折线和实际轮廓还是可以近似地看成相同的曲线的--------这就是直线插补.联动与插补决定质点空间位置需要三个坐标,决定刚体空间位置需要六个坐标。
一个运动控制系统可以控制的坐标的个数称做该运动控制系统的轴数。
一个运动控制系统可以同时控制运动的坐标的个数称做该运动控制系统可联动的轴数。
联动各轴的运动轨迹具有一定的函数关系,例如直线,园弧,抛物线,正弦曲线。
直接计算得出运动轨迹的坐标值往往要用到乘除法,高次方,无理函数,超越函数,会占用很多的CPU时间。
为了实时快速控制运动轨迹,往往预先对运动轨迹进行直线和圆弧拟合,拟合后的运动轨迹仅由直线段和圆弧段所组成,而计算运动轨迹时,每一点的运动轨迹跟据前一个坐标点的数据通过插补运算得到,这样就把计算简化为增量减量移位和加减法。
实现多轴联动的直线插补并不困难,圆弧插补一般为两轴联动。
实现插补运算可以有多种算法,例如"DDA 算法","逐点比较法","正负法","最小偏差法(Bresenham 算法)"等,其中最小偏差法具有最小的偏差和较快的运行速度。
数控装备加工对象的轮廓形状往往是各种各样的,这些轮廓一般都是用直线、圆弧、螺旋线、抛物线和自由曲线等典型的线型来描述。
数控装置中一般都或多或少具有上述线型的控制方法,即插补控制算法。
其中最基本的是直线和圆弧插补。
在具有某线型插补算法的数控装置中,零件加工程序的编制可大大简化。
一般仅提供描述该线形所必须的相关参数,如对直线,提供其起点和终点;对圆弧,提供起点终点、顺圆或逆圆以及圆心相对于起点的位置。
因此,为了实现轨迹控制,必须在运动过程中实时计算出满足线型和进给速度要求的若干中间点(在起点和终点之间),这就是数控技术中插补(Interpolation)的概念。
据此,可对插补定义如下:所谓插补就是根据给定进给速度和给定轮廓线型的要求,在轮廓的已知点之间,确定一些中间点的方法,这种方法称为插补方法或插补原理。
而对于每种方法(原理)又可能用不同的计算方法来实现,这种具体的计算方法称之为插补算法。
对于轮廓控制系统来说,最重要的功能便是插补功能,这是由于插补运算是在机床运动过程中实时进行的,即在有限的时间内,必须对各坐标轴实时地分配相应的位置控制信息和速度控制信息。
轮廓控制系统正是因为有了插补功能,才能加工出各种形状复杂的零件。
可以说插补功能是轮廓控制系统的本质特征。
因此,插补算法的优劣,将直接影响CNC 系统的性能指标。
在数控装置中其实现步骤主要有三个,下面以圆弧加工的插补过程为例进行说明。
下图为欲加工的圆弧轨迹L,起点为P0,终点为Pe。
CNC 装置将采用下面三个步骤对该圆弧进行插补:插补算法原理图1.逼近处理CNC 装置按系统的插补时间△t 和加工所要求的进给速度F,将L 分割成由若干短直线△Ll,△L2,…,△Li…,这里:△Li,=F△t(i=1,2,…)。
则当△t =0 时,折线段之和接近圆弧L 即:当然,用直线△Ll逼近圆弧存在着逼近误差δ,但是只要δ(△Li 足够短)足够小,总是能满足零件加工要求的。
当 F 为常数时,由于出对于某一个数控系统而言恒为常数,故△Li 的长度也为常数△L,只不过其斜率与在L上的位置有关。
2.插补运算在计算出△Li 后,必须将其分解为x轴及y 轴移动分量和(在时间内),它们将随着△丘在£上位置的不断变化而变化,但它们满足:且有: Fx = △Xi/△tiFy= △Yi/△ti由于△Li 的斜率是不断变化的,因此进给速度在X 方向及Y 方向的分量Fx与F y 以及它们之间的比值Fx/Fy都在不断变化的。
3.指令输出将计算出△ti在时间内的和作为指令输出给X 轴和Y 轴,以控制它们联动。
由此可知,只要能连续地自动控制X 和Y 两个进给轴在时间内移动量。
就可以实现曲线轮廓零件的加工。