离散时间系统状态稳定性及判别法
- 格式:doc
- 大小:175.00 KB
- 文档页数:10
§ 5.4 离散时间系统状态稳定性及判别法1. 离散时间系统的平衡状态(点) 设0(1)(),(0),0,1,2,,x k Ax k x x k +===(5.17)称=e Ax 0的e x 为(5.17)的平衡状态(点). 当A 奇异时, 有无数个平衡状态. 2. 平衡状态(点)的稳定性(1)稳定:∀>∃>0,0εδ,使当-<e x x 0δ时,有-<≥e x k x k (),0ε;(2)渐近稳定:∃>0δ,使当-<e x x 0δ时,有→∞-=e k x k x lim ()0;(3)全局渐近稳定:任意∈nx 0R ,都有→∞-=e k x k x lim ()0;(4)不稳定:∃>00ε, 无论δ 多小正数, 总有>k 10, 使->e x k x 10()ε对定常系统, 渐近稳定 全局一致渐近稳定. 3.稳定性判别对定常系统(1)()x k Ax k +=若0e x =稳定(渐近稳定),则其它e x 也稳定(渐近稳定);若0e x =渐近稳定,则e x 必为一致全局渐近稳定;简单介绍0e x =稳定性条件 设(5.17)的解==kx k A x k 0(),0,1,2,则渐近稳定⇔→∞→∞-==kk k x k A x 0lim ()0lim 0(≠x 00),⇔→∞=k k A lim 0⇔-→∞=k k TJ T1lim 0⇔→∞=kk J lim 0⇔A 的所有特征值的模全小于1⇔A的所有特征值都位于复平面上的单位圆内. 其中J为A的若当形.如11......k kkkr r J JJJ J⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦且再如11221111001000000k k kkk kk k kkkC CJ Cλλλλλλλλλ---⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⇔A 的所有特征值的模全小于1⇔A 的所有特征值都位于复平面上的单位圆内.例 设A 有互不相同特征值n 12,,,λλλ, 则T , 使⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦kk kkk n n A T T T T 112-1-12λλλλλλ 由此可得→∞<=⇔==ki i k i n i n ||1,1,2,,lim 0,1,2,,λλ→∞⇔=kk A lim 0.定理5.12 系统为(5.17)的稳定性判定如下:(i) 0e x =稳定⇔A 所有特征值的模全小于1或等于1,且模等于1的特征值对应的约当块是一阶的; (ii) 0e x =渐近稳定⇔A 的所有特征值模全小于1. 对一般非线性系统+==x k F x k k (1)(()),0,1,2,(5.18)在=e x 0(设=F (0)0)的稳定性判定方法有定理5.13 对(5.18), 若()x k 的标量函数V x k ((()),满足 (i) V x k (())为正定;(ii) ()=+-V x k V x k V x k (())((1))(())∆负定; (iii) 当→∞x k ||()||时,有→∞V x k ((()). 则=e x 0全局渐近稳定的.若无(iii), 则=e x 0是渐近稳定的;再若(ii)中V x k (())∆为半负定, 则=e x 0仅是稳定的. 定理用于定常系统(5.17), 即得定理5.14 线性定常离散(5.17)的=e x 0为渐近稳定⇔对∀Q > 0, 李雅普诺夫方程-=-TA PA P Q有唯一正定解P . 证只证充分性,即已有对∀Q > 0, -=-TA PA P Q 有唯一解0P >, 令=T k kk V x x Px (), 则有+++=-=-T T k k k k k kk V x V x V x x Px x Px 111()()()∆=-=-T TT kk kk x A PA P x x Qx (),显见k V x ()∆为负定, 故=e x 0渐近稳定.例5.6 设⎡⎤+=⎢⎥⎣⎦a x k x kb 0(1)()0 试分析稳定的条件.解 选Q = I , 则有-=-TA PA P I , 即 -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦p p p p a a p p p p b b 111211122122212200100001整理且比较, 得,1)1(,0)1(,1)1(22212211=-=-=-b p ab p a p 要P 为正定, 需满足<<a b ||1,||1, (5.19)解出===--p p p ab1112222211,0,11, =e x 0一致全局渐近稳定.实质上:<<a b ||1,||1⇔所有特征值的模全小于1.。
离散条件下的李雅普诺夫稳定判据1. 概述在控制论与系统论中,稳定性是一个重要的概念。
在研究动态系统的稳定性时,我们常常需要使用稳定性判据来判断系统的稳定性。
而在离散条件下,李雅普诺夫稳定判据就是一个常用的方法。
2. 李雅普诺夫稳定判据的定义李雅普诺夫稳定判据是由俄罗斯数学家亚科夫•伊万诺维奇•李雅普诺夫在稳定性理论中提出的一种判据。
它用于判断差分方程系统在离散条件下的稳定性。
3. 离散条件下的稳定性在离散条件下,系统的状态是以离散的时间点进行更新的。
这种情况下,我们常常需要研究系统的稳定性,即系统在经过一定次数的状态更新后,是否能趋向于某一稳定状态,或者在一定范围内波动。
而李雅普诺夫稳定判据就是用来判断这种系统的稳定性的一种方法。
4. 李雅普诺夫稳定判据的原理李雅普诺夫稳定判据的核心思想是通过构造一个Lyapunov函数来判断系统的稳定性。
对于一个给定的系统,如果存在一个 Lyapunov 函数,满足对系统的任意状态进行更新后,Lyapunov 函数的值都会减小,那么系统就是稳定的。
5. Lyapunov 函数的选择在使用李雅普诺夫稳定判据时,选择合适的Lyapunov 函数是至关重要的。
一般来说,Lyapunov 函数的选择是根据系统的特点来确定的。
常见的 Lyapunov 函数包括二次型函数、指数型函数等。
不同的Lyapunov 函数对系统的稳定性判断有不同的适用条件和效果。
6. 李雅普诺夫稳定判据的应用李雅普诺夫稳定判据在控制论与系统论中有着广泛的应用。
通过使用李雅普诺夫稳定判据,我们可以对离散条件下的系统进行稳定性分析,为系统的设计与控制提供理论支持。
7. 结论离散条件下的李雅普诺夫稳定判据是系统稳定性分析中的重要工具,通过对系统的 Lyapunov 函数进行构造和分析,我们可以判断系统是否稳定,并为系统的设计与控制提供理论依据。
希望本文的介绍对您有所帮助。
基于离散条件下的李雅普诺夫稳定判据,我们将进一步探讨该方法的具体应用和细节,以及其对控制系统和动态系统的实际意义。
“信号与系统”中系统稳定性分析巩亚楠 魏德旺 刘俊良 李淑晴 吕海燕*(临沂大学 山东临沂 276000)摘要:“信号与系统”是电子信息类本科阶段的专业基础课。
在学习的过程中,很多同学只是记住知识点,不明白它们之间的逻辑关系,不会灵活运用。
该文旨在利用思维导图的方式对系统稳定性分析方法进行总结,描述了连续时间系统和离散时间系统的稳定性,对每个系统提出了两种分析方法,即时域分析法和变换域分析法,对两种方法的具体分析过程做出了详细的说明,并对系统稳定性给出了4种判别方法。
借助思维导图,帮助学生更好地理解知识,充分调动学生学习的积极性。
关键词:信号与系统 思维导图 系统稳定性分析 连续时间系统 离散时间系统中图分类号:G64文献标识码:A 文章编号:1672-3791(2023)18-0078-04 Analysis of the System Stability in "Signals and Systems"GONG Yanan WEI Dewang LIU Junliang LI Shuqing LYU Haiyan*(Linyi University, Linyi, Shandong Province, 276000 China) Abstract:"Signals and systems" i s a professional basic course of the undergraduate level of electronic information. In the process of learning, many students just remember knowledge points, but they don't understand the logic rela‐tionship among them and cannot use them freely. This paper aims to summarize the analytical method of the system stability by mind mapping, describes the stability of the continuous-time system and the discrete-time system, puts forward two analytical methods for each system, namely the time-domain analysis method and the transform-domain analysis method, explains in detail the specific analytical process of the two methods, and also presents four discriminant methods for the system stability. With the help of mind mapping, students can better comprehend knowledge and fully mobilize their enthusiasm for learning.Key Words: Signals and Systems; Mind mapping; System stability analysis; Continuous-time system; Discrete-time system1 “信号与系统”课程地位“信号与系统”作为信息、电子、自控、通信等专业的专业基础课,是为后续数字信号处理、数字图像处理、通信原理、自动控制等课程的学习打下基础,“信号与系统分析”被认为是一门理解困难、计算繁杂、偏理论模型的课程。
§ 5、4 离散时间系统状态稳定性及判别法 1、 离散时间系统的平衡状态(点) 设0(1)(),(0),0,1,2,,x k Ax k x x k +===L (5、17)称=e Ax 0的e x 为(5、17)的平衡状态(点)、 当A 奇异时, 有无数个平衡状态、 2、 平衡状态(点)的稳定性(1)稳定:∀>∃>0,0εδ,使当-<e x x 0δ时,有-<≥e x k x k (),0ε;(2)渐近稳定:∃>0δ,使当-<e x x 0δ时,有→∞-=e k x k x lim ()0;(3)全局渐近稳定:任意∈nx 0R ,都有→∞-=e k x k x lim ()0;(4)不稳定:∃>00ε, 无论δ 多小正数, 总有>k 10, 使->e x k x 10()ε对定常系统, 渐近稳定 全局一致渐近稳定、 3、稳定性判别对定常系统(1)()x k Ax k +=若0e x =稳定(渐近稳定),则其它e x 也稳定(渐近稳定);若0e x =渐近稳定,则e x 必为一致全局渐近稳定; 简单介绍0e x =稳定性条件 设(5、17)的解==kx k A x k 0(),0,1,2,L则渐近稳定⇔→∞→∞-==kk k x k A x 0lim ()0lim 0(≠x 00),⇔→∞=k k A lim 0⇔-→∞=k k TJ T1lim 0⇔→∞=kk J lim 0⇔A 的所有特征值的模全小于1⇔A 的所有特征值都位于复平面上的单位圆内、其中J为A的若当形、如11......k kkkr r J JJJ J⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦且再如11221111001000000k k kkk kk k kkkC CJ Cλλλλλλλλλ---⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⇔A的所有特征值的模全小于1⇔A 的所有特征值都位于复平面上的单位圆内、 例 设A 有互不相同特征值n 12,,,λλλL , 则T , 使⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦kkk kk n n A T T T T 112-1-12λλλλλλOO由此可得→∞<=⇔==ki i k i n i n ||1,1,2,,lim 0,1,2,,λλL L→∞⇔=kk A lim 0、定理5、12 系统为(5、17)的稳定性判定如下: (i) 0e x =稳定⇔A 所有特征值的模全s 小于1或等于1,且模等于1的特征值对应的约当块就是一阶的; (ii) 0e x =渐近稳定⇔A 的所有特征值模全小于1、 对一般非线性系统+==x k F x k k (1)(()),0,1,2,L (5、18)在=e x 0(设=F (0)0)的稳定性判定方法有定理5、13 对(5、18), 若()x k 的标量函数V x k ((()),满足(i) V x k (())为正定;(ii) ()=+-V x k V x k V x k (())((1))(())∆负定; (iii) 当→∞x k ||()||时,有→∞V x k ((())、 则=e x 0全局渐近稳定的、 若无(iii), 则=e x 0就是渐近稳定的;再若(ii)中V x k (())∆为半负定, 则=e x 0仅就是稳定的、 定理用于定常系统(5、17), 即得定理5、14 线性定常离散(5、17)的=e x 0为渐近稳定⇔对∀Q > 0, 李雅普诺夫方程-=-TA PA P Q有唯一正定解P 证只证充分性,即已有对∀Q > 0, -=-TA PA P Q 有唯一解0P >, 令=T k kk V x x Px (), 则有+++=-=-T T k k k k k kk V x V x V x x Px x Px 111()()()∆=-=-T TT kk kk x A PA P x x Qx (),显见k V x ()∆为负定, 故=e x 0渐近稳定、例5、6 设⎡⎤+=⎢⎥⎣⎦a x k x kb 0(1)()0 试分析稳定的条件、解 选Q = I , 则有-=-TA PA P I , 即 -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦p p p p a a p p p p b b 111211122122212200100001 整理且比较, 得,1)1(,0)1(,1)1(22212211=-=-=-b p ab p a p要P 为正定, 需满足<<a b ||1,||1, (5、19)解出===--p p p ab1112222211,0,11, =e x 0一致全局渐近稳定、实质上:<<a b ||1,||1⇔所有特征值的模全小于1、。
Lyapunov 稳定性分析一、 Lyapunov 稳定性概念稳定性是一切自动控制系统必须满足的一个性能指标,它是系统受到干扰后偏离平衡状态的运动依靠系统的内部结构因素返回到平衡状态或限制在它的一个有限领域内的一种性能.1. 平衡状态(平衡点)①在外界没有干扰的情况下,系统静止不动的状态.②系统()=,x fx t ∙ 的平衡状态:状态向量e x 是平衡状态⇔ (),0e f x t = . ③x Ax ∙= 的平衡状态:方程0eAx =的解e x . 2. Lyapunov 稳定性定义e x 称为系统()=,xf x t ∙的Lyapunov 稳定平衡点,如果对任意的轨迹()x t ,只要初始状态离e x 很近,整个轨迹就不会远离平衡点e x .稳定性的εδ- 定义:()=,x f x t ∙的平衡点是Lyapunov 稳定的,如果对任意的0ε> ,存在0δ> ,使得对任意的()x t ,只要初始状态满足()()0x t s ε∈ .3. Lyapunov 渐进稳定性定义平衡点称为渐进稳定的,如果满足:①Lyapunov 稳定性;②当时间趋于无穷时轨迹趋于平衡状态:()lim t e x t x →∞=4. lyapunov 全局渐进稳定性定义平衡点称为全局渐进稳定的,如果满足:①Lyapunov 稳定性;②当时间趋于无穷时状态轨迹趋于平衡状态;③条件②对于任意初始状态称成立.5. Lyapunov 不稳定 ()=,x f x t ∙的平衡点e x 是不稳定的,如果存在0ε>,对任意的0δ>,都有初始状态满足()0e x t x δ-< 的轨迹()x t ,在某个时刻1t 使得()1e x t x ε-≥ .二、 Lyapunov 稳定性判据1.Lyapunov 稳定性判别的基本方法(考虑时不变系统即系统的参数不随时间而变化) ①间接法:通过求出系统的解来判断.②直接法(Lyapunov 函数方法) :构造一种广义能量函数(Lyapunov 函数)并利用系统向量场()f x 来判断.2.Lyapunov 函数的定义一个标量函数:n n V → 称为Lyapunov 函数,如果满足①()Vx 是正定的; ②()V x 具有连续的偏导数()()()1V x V x V x x x x ∂∂∂⎡⎤=⎢⎥∂∂∂⎣⎦L . 一个Lyapunov 函数称为半径无限大的,如果它进一步满足 ③当x →∞ 时,()V x →∞ .3.Lyapunov 稳定性判别定理考虑系统()x f x ∙=,设0e x = 为一平衡点,如果存在连续可微的标量函数()V x 满足 ①()Vx 是正定的; ②()()V V x f x x ∙∂=∂ 是半负定的; 则系统的平衡点0ex = 是Lyapunov 稳定的. 4.Lyapunov 渐进稳定性判别定理考虑系统()x f x ∙=,设0e x = 为一平衡点,如果存在连续可微的标量函数()V x 满足 ①()Vx 是正定的; ②()()V V x f x x∙∂=∂ 是半负定的; ③集合(){}|0n x V x ∙∈=¡ 不包含系统的除平衡点意外的状态轨迹。
§ 5.4 离散时间系统状态稳定性及判别法
1. 离散时间系统的平衡状态(点) 设
0(1)(),(0),0,1,2,
,x k Ax k x x k +===(5.17)
称=e Ax 0的e x 为(5.17)的平衡状态(点). 当A 奇异时, 有无数个平衡状态. 2. 平衡状态(点)的稳定性
(1)稳定:∀>∃>0,0εδ,使当-<e x x 0δ时,有
-<≥e x k x k (),0ε;
(2)渐近稳定:∃>0δ,
使当-<e x x 0δ时,有
→∞
-=e k x k x lim ()0;
(3)全局渐近稳定:任意∈n
x 0R ,
都有→∞
-=e k x k x lim ()0;
(4)不稳定:∃>00ε, 无论δ 多小正数, 总有>k 10, 使
->e x k x 10()ε
对定常系统, 渐近稳定 全局一致渐近稳定. 3.稳定性判别
对定常系统(1)()x k Ax k +=
若0e x =稳定(渐近稳定),则其它e x 也稳定(渐近稳定);
若0e x =渐近稳定,则e x 必为一致全局渐近稳定;
简单介绍0e x =稳定性条件 设(5.17)的解
==k
x k A x k 0(),0,1,
2,
则渐近稳定
⇔→∞
→∞
-==k
k k x k A x 0lim ()0lim 0(≠x 00),
⇔→∞
=k k A lim 0⇔-→∞
=k k TJ T
1
lim 0⇔→∞
=k
k J lim 0
⇔A 的所有特征值的模全小于1
⇔A的所有特征值都位于复平面上的单位圆内. 其中J为A的若当形.
如
11
......
k k
k
k
r r J J
J
J J
⎡⎤⎡⎤
⎢⎥⎢⎥
==⎢⎥
⎢⎥
⎢⎥⎢⎥
⎣⎦⎣⎦
且再如
1122
11
1
10
0100
0000
k k k
k
k k
k k k
k
k
C C
J C
λλλ
λ
λλλ
λλ
--
-
⎡⎤⎡⎤
⎢⎥⎢⎥
==→
⎢⎥⎢⎥
⎢⎥⎢⎥
⎣⎦⎢⎥
⎣⎦
⇔A 的所有特征值的模全小于1
⇔A 的所有特征值都位于复平面上的单位圆内.
例 设A 有互不相同特征值n 12,,
,λλλ, 则T , 使
⎡⎤⎡⎤
⎢⎥⎢⎥
⎢
⎥⎢
⎥==⎢⎥⎢⎥
⎢⎥⎢⎥
⎣⎦⎣
⎦
k
k k
k
k n n A T T T T 11
2
-1-12
λλλλ
λλ 由此可得
→∞<=⇔==k
i i k i n i n ||1,1,2,,lim 0,1,2,
,λλ
→∞
⇔=k
k A lim 0.
定理5.12 系统为(5.17)的稳定性判定如下:
(i) 0e x =稳定⇔A 所有特征值的模全小于1或等于1,
且模等于1的特征值对应的约当块是一阶的; (ii) 0e x =渐近稳定⇔A 的所有特征值模全小于1. 对一般非线性系统
+==x k F x k k (1)(()),0,1,
2,
(5.18)
在=e x 0(设=F (0)0)的稳定性判定方法有
定理5.13 对(5.18), 若()x k 的标量函数V x k ((()),满足 (i) V x k (())为正定;
(ii) ()=+-V x k V x k V x k (())((1))(())∆负定; (iii) 当→∞x k ||()||时,有→∞V x k ((()). 则=e x 0全局渐近稳定的.
若无(iii), 则=e x 0是渐近稳定的;
再若(ii)中V x k (())∆为半负定, 则=e x 0仅是稳定的. 定理用于定常系统(5.17), 即得
定理5.14 线性定常离散(5.17)的=e x 0为渐近稳定
⇔对∀Q > 0, 李雅普诺夫方程
-=-T
A PA P Q
有唯一正定解P . 证只证充分性,
即已有对∀Q > 0, -=-T
A PA P Q 有唯一解0P >, 令=T k k
k V x x Px (), 则有
+++=-=-T T k k k k k k
k V x V x V x x Px x Px 111()()()∆
=-=-T T
T k
k k
k x A PA P x x Qx (),
显见k V x ()∆为负定, 故=e x 0渐近稳定.
例5.6 设
⎡⎤
+=⎢⎥
⎣⎦
a x k x k
b 0(1)()0 试分析稳定的条件.
解 选Q = I , 则有-=-T
A PA P I , 即 -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤
-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦
⎣⎦⎣⎦p p p p a a p p p p b b 111211
1221
2221
2200100001
整理且比较, 得
,1)1(,0)1(,1)1(2
2212211=-=-=-b p ab p a p 要P 为正定, 需满足
<<a b ||1,||1, (5.19)
解出
===--p p p a
b
1112222
2
1
1
,0,11, =e x 0一致全局渐近稳定.
实质上:<<a b ||1,||1⇔所有特征值的模全小于1.。