第三章,离散系统的稳定性
- 格式:ppt
- 大小:1.64 MB
- 文档页数:20
§ 5.4 离散时间系统状态稳定性及判别法1. 离散时间系统的平衡状态(点) 设0(1)(),(0),0,1,2,,x k Ax k x x k +===(5.17)称=e Ax 0的e x 为(5.17)的平衡状态(点). 当A 奇异时, 有无数个平衡状态. 2. 平衡状态(点)的稳定性(1)稳定:∀>∃>0,0εδ,使当-<e x x 0δ时,有-<≥e x k x k (),0ε;(2)渐近稳定:∃>0δ,使当-<e x x 0δ时,有→∞-=e k x k x lim ()0;(3)全局渐近稳定:任意∈nx 0R ,都有→∞-=e k x k x lim ()0;(4)不稳定:∃>00ε, 无论δ 多小正数, 总有>k 10, 使->e x k x 10()ε对定常系统, 渐近稳定 全局一致渐近稳定. 3.稳定性判别对定常系统(1)()x k Ax k +=若0e x =稳定(渐近稳定),则其它e x 也稳定(渐近稳定);若0e x =渐近稳定,则e x 必为一致全局渐近稳定;简单介绍0e x =稳定性条件 设(5.17)的解==kx k A x k 0(),0,1,2,则渐近稳定⇔→∞→∞-==kk k x k A x 0lim ()0lim 0(≠x 00),⇔→∞=k k A lim 0⇔-→∞=k k TJ T1lim 0⇔→∞=kk J lim 0⇔A 的所有特征值的模全小于1⇔A的所有特征值都位于复平面上的单位圆内. 其中J为A的若当形.如11......k kkkr r J JJJ J⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦且再如11221111001000000k k kkk kk k kkkC CJ Cλλλλλλλλλ---⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦⇔A 的所有特征值的模全小于1⇔A 的所有特征值都位于复平面上的单位圆内.例 设A 有互不相同特征值n 12,,,λλλ, 则T , 使⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦kk kkk n n A T T T T 112-1-12λλλλλλ 由此可得→∞<=⇔==ki i k i n i n ||1,1,2,,lim 0,1,2,,λλ→∞⇔=kk A lim 0.定理5.12 系统为(5.17)的稳定性判定如下:(i) 0e x =稳定⇔A 所有特征值的模全小于1或等于1,且模等于1的特征值对应的约当块是一阶的; (ii) 0e x =渐近稳定⇔A 的所有特征值模全小于1. 对一般非线性系统+==x k F x k k (1)(()),0,1,2,(5.18)在=e x 0(设=F (0)0)的稳定性判定方法有定理5.13 对(5.18), 若()x k 的标量函数V x k ((()),满足 (i) V x k (())为正定;(ii) ()=+-V x k V x k V x k (())((1))(())∆负定; (iii) 当→∞x k ||()||时,有→∞V x k ((()). 则=e x 0全局渐近稳定的.若无(iii), 则=e x 0是渐近稳定的;再若(ii)中V x k (())∆为半负定, 则=e x 0仅是稳定的. 定理用于定常系统(5.17), 即得定理5.14 线性定常离散(5.17)的=e x 0为渐近稳定⇔对∀Q > 0, 李雅普诺夫方程-=-TA PA P Q有唯一正定解P . 证只证充分性,即已有对∀Q > 0, -=-TA PA P Q 有唯一解0P >, 令=T k kk V x x Px (), 则有+++=-=-T T k k k k k kk V x V x V x x Px x Px 111()()()∆=-=-T TT kk kk x A PA P x x Qx (),显见k V x ()∆为负定, 故=e x 0渐近稳定.例5.6 设⎡⎤+=⎢⎥⎣⎦a x k x kb 0(1)()0 试分析稳定的条件.解 选Q = I , 则有-=-TA PA P I , 即 -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦p p p p a a p p p p b b 111211122122212200100001整理且比较, 得,1)1(,0)1(,1)1(22212211=-=-=-b p ab p a p 要P 为正定, 需满足<<a b ||1,||1, (5.19)解出===--p p p ab1112222211,0,11, =e x 0一致全局渐近稳定.实质上:<<a b ||1,||1⇔所有特征值的模全小于1.。
离散时间系统稳定的充要条件离散时间系统是指系统的输入和输出在时间上是离散的情况下进行的系统分析和设计。
而离散时间系统的稳定性是一个重要的性质,它决定了系统是否能够在一定范围内保持稳定的输出。
本文将介绍离散时间系统稳定性的充要条件。
一、离散时间系统的稳定性概念稳定性是指系统在有限时间内是否能够保持有限的幅值,而不会出现无限增长或发散的情况。
对于离散时间系统而言,其稳定性可以分为两类:绝对稳定和相对稳定。
绝对稳定是指系统的输出在有限时间内始终保持有限的幅值,不会发散或无限增长。
相对稳定是指系统的输出在有限时间内保持有限的幅值,但可能会在无穷时间后发散或无限增长。
二、离散时间系统的稳定性充要条件1. 线性时不变系统对于线性时不变系统而言,其稳定性充要条件是系统的传递函数的极点都位于单位圆内。
也就是说,系统的所有极点的模长都小于1。
2. 有限冲激响应系统对于有限冲激响应系统而言,其稳定性充要条件是系统的冲激响应是绝对可和的。
也就是说,系统的冲激响应的绝对和是有限的。
3. 时变系统对于时变系统而言,其稳定性充要条件是系统的输入和输出序列都是绝对可和的,并且系统的输入和输出序列的绝对和都是有界的。
4. 有限差分方程系统对于有限差分方程系统而言,其稳定性充要条件是系统的差分方程的根都位于单位圆内。
也就是说,系统的所有根的模长都小于1。
5. 正态系统对于正态系统而言,其稳定性充要条件是系统的所有特征值的实部都小于等于零。
6. 离散时间系统的Lyapunov稳定性对于离散时间系统而言,其稳定性充要条件是系统的状态方程存在一个正定矩阵,使得系统的状态的Lyapunov函数是递减的。
三、离散时间系统的稳定性判定方法除了以上充要条件外,还可以通过以下方法判断离散时间系统的稳定性:1. 构造系统的Lyapunov函数。
通过构造系统的Lyapunov函数来判断系统的稳定性。
如果系统的状态的Lyapunov函数是递减的,则系统是稳定的。
离散时间系统的可控性及其稳定性分析研究一、引言离散时间系统(discrete-time system)是指在时间上取样的系统,指的是在时域上离散且在幅度上是连续的信号,是一类重要的时域系统。
在日常生活中,我们常常会遇到离散时间系统,例如数字电子、数字通信、数字信号处理等领域。
离散时间系统的可控性及其稳定性是该领域热门的研究方向之一,本文将从两方面进行探讨。
二、离散时间系统的可控性1.可控性的定义可控性是指系统在一定时间内,能否通过其输入信号来达到所需状态,并且可以在该状态下保持一定的时间。
在离散时间系统中,可控性的定义与连续时间系统中的可控性类似,但并不能简单地借鉴连续时间系统的定义。
2.可控性的判定(1)Kalman条件Kalman条件是判定离散时间系统可控性的重要方法。
在离散时间系统中,若一个初态能够通过一个有限时间内的控制输入到达系统的任意状态,则称该系统是可控的。
用数学语言描述,即离散时间系统可控的条件是:矩阵 Cont(A,B) 的秩等于 n,其中 A 和B 是系统的状态矩阵和输入矩阵,n 是系统的状态维数。
(2)PBH条件PBH条件是判定离散时间系统可控性的另一种方法。
与Kalman条件相比,PBH条件更加简便,适用于各种规范矩阵A和B.给定一个离散时间系统,我们可以将可控性矩阵写成:$$ \begin{bmatrix} A - \lambda_i I & B \end{bmatrix} $$式中,I 是单位矩阵,λi 是系统的特征值,B 是系统的输入矩阵。
若该矩阵的秩等于系统状态维数 n,则该系统可控。
三、离散时间系统的稳定性1.稳定性的定义稳定性是指系统输入和状态状态在有限范围内的变化,系统的输出也会随之保持在一个有限的范围。
2.稳定性的性质(1)稳定性的充分条件离散时间系统可控的充分条件是系统的特征值均在单位圆内。
(2)稳定性的判定常用的离散时间系统稳定性判定方法有 Jury准则和Nyquist准则。
离散时间系统的稳定性分析离散时间系统是一种在离散时间点上进行状态变化的系统,与连续时间系统相对应。
稳定性分析是对系统行为的一个重要特征进行评估和判断的过程。
对于离散时间系统的稳定性分析,我们可以通过不同方法进行研究和判断,如利用差分方程、状态空间法、Lyapunov稳定性理论等。
本文将从这些角度出发,深入探讨离散时间系统的稳定性分析方法。
一、差分方程法差分方程法是一种基于离散时间点上变量之间的差分关系进行稳定性分析的方法。
对于离散时间系统,我们可以通过建立差分方程来描述系统的动态行为。
一般而言,稳定的离散时间系统在各个时间点上的状态变量都保持在某个有界范围内。
因此,我们可以通过差分方程的解析解或数值解来判断系统的稳定性。
二、状态空间法状态空间法是一种通过描述系统在不同离散时间点上状态变化的方法。
在状态空间中,系统的状态由一组关于时间的差分方程表示。
通过对系统状态进行迭代,我们可以从初始状态推导出系统在未来时间点上的状态。
根据这些状态的变化,我们可以判断系统是否稳定。
三、Lyapunov稳定性理论Lyapunov稳定性理论是一种通过利用Lyapunov函数来判断离散时间系统稳定性的方法。
Lyapunov函数是一个用于衡量系统状态的能量函数,它在系统稳定时具有稳定性的性质。
通过构造和分析Lyapunov函数,我们可以判断离散时间系统是否稳定。
如果能够找到一个Lyapunov函数,使得对于系统的每一个状态,该函数都是非负的,并且沿着系统的状态变化轨迹递减,那么系统就是稳定的。
四、其他稳定性分析方法除了以上介绍的几种常见方法外,还存在其他一些稳定性分析方法,如频率域方法、随机系统稳定性分析等。
这些方法可以根据具体问题的需求进行选择和应用,从而更好地评估离散时间系统的稳定性。
综上所述,离散时间系统的稳定性分析是研究系统动态行为的一个重要问题。
通过差分方程法、状态空间法、Lyapunov稳定性理论以及其他稳定性分析方法,我们可以对离散时间系统的稳定性进行全面评估和判断。
离散控制系统的稳定性分析与设计离散控制系统(Discrete Control System)是指将时间划分为离散的、不连续的间隔,并且系统的状态在这些间隔中发生改变的一种控制系统。
离散控制系统广泛应用于各种领域,如工业控制、自动化、机器人技术等。
在设计离散控制系统时,稳定性是一个至关重要的考虑因素。
本文将介绍离散控制系统的稳定性分析与设计。
一、离散控制系统的基本概念离散控制系统由离散信号和离散时间组成。
离散信号是在某一离散时刻上的取值是确定的,而在两个离散时刻之间则可以是任意值。
离散时间是指系统的状态在一系列离散时刻上发生变化。
离散控制系统与连续控制系统相比,更适用于数字化和计算机控制领域。
二、离散控制系统的稳定性分析离散控制系统的稳定性指系统对于输入信号的扰动具有一定的容忍度,系统能够维持在某一稳定状态而不产生不稳定的振荡。
稳定性分析是为了保证离散控制系统的正常工作和控制效果。
常用的稳定性分析方法包括传输函数法、根轨迹法和Lyapunov稳定性方法等。
1. 传输函数法传输函数法是一种基于系统的输入和输出之间的关系来分析稳定性的方法。
通过建立系统的传输函数,可以用频域的分析方法来判断系统的稳定性。
传输函数是输入变量和输出变量之间的比例关系,通常用拉普拉斯变换表示。
2. 根轨迹法根轨迹法是一种几何法,通过追踪系统传输函数的所有极点随参数变化而在复平面上运动的路径,分析系统的稳定性。
当系统的所有极点位于左半平面时,系统是稳定的。
3. Lyapunov稳定性方法Lyapunov稳定性方法是一种基于Lyapunov函数的方法,通过构造Lyapunov函数来分析系统的稳定性。
Lyapunov函数是一个实值函数,满足一定的条件,可以确定系统的稳定性。
若系统的Lyapunov函数对于所有的非零初始条件都是非负的,则系统是稳定的。
三、离散控制系统的稳定性设计在离散控制系统的设计过程中,稳定性是至关重要的考虑因素。
离散控制系统中的稳定性与鲁棒性分析离散控制系统是指由离散时间运行的控制系统,它采样输入和输出信号来完成控制功能。
稳定性和鲁棒性是离散控制系统设计中非常关键的问题,本文将对离散控制系统中的稳定性与鲁棒性进行详细分析。
一、稳定性分析稳定性是指在系统的输入和输出之间存在一种平衡状态,系统能够对输入信号作出适当的响应而不发生不可控制或不可预测的震荡或发散。
稳定性分析主要有零极点分布、Nyquist稳定判据和位置根判据等方法。
1. 零极点分析离散系统的稳定性与其极点的位置有关。
通常采用单位脉冲响应函数H(z)的零极点分布来分析系统的稳定性。
对于一阶离散系统而言,它的极点位置应满足|z|<1的条件才能保证系统的稳定性。
对于高阶系统,可以通过复平面法或者根轨迹法来分析系统的稳定性。
2. Nyquist稳定判据Nyquist稳定判据是通过绘制Nyquist图来判断系统的稳定性。
根据Nyquist稳定判据,如果系统的传输函数H(z)的极点都位于单位圆内,那么系统是稳定的。
否则,系统将会出现振荡或发散的现象。
3. 位置根判据位置根判据是通过对系统的传输函数进行倒数操作,然后判断所得到的新系统的极点位置来评估系统的稳定性。
位置根判据的基本思想是,如果倒数系统的极点位于单位圆外,那么原系统是稳定的。
二、鲁棒性分析鲁棒性是指系统具有对参数变化、环境变化或非线性因素的强鲁棒性,即保持系统的性能特性不因外界因素变化而发生较大改变。
在离散控制系统中,鲁棒性分析主要有灵敏度函数法、小增益界定理和鲁棒优化等方法。
1. 灵敏度函数法灵敏度函数法是通过构造灵敏度函数来分析系统的鲁棒性。
灵敏度函数可以用来评估系统对参数变化的敏感性。
如果灵敏度函数的幅值比较小,说明系统对参数变化不敏感,具有较好的鲁棒性。
2. 小增益界定理小增益界定理是一种常用的鲁棒性分析方法。
它基于系统的复值矩阵进行分析,通过确定复值矩阵的边界来评估系统的鲁棒性。