离散系统的稳定性分析
- 格式:doc
- 大小:198.00 KB
- 文档页数:6
2-d 连续-离散系统的稳定性、可控性与可观测性判据
一、稳定性
连续离散系统稳定性是指系统状态值不断变化,但随着时间的推移,系统的解不会离开某一区域或范围,满足系统的平衡。
可以用Lyapunov准则来判断一个系统的稳定性,即找出一个函数V,系统的长期行为是满足V的进行,且由此可以确定系统的长期行为的变化趋势。
此外,系统稳定性还可以通过极点分析方法来判断,即系统极值处被定义为极点,并从中探索该系统在极点上是否稳定,以及该极点处系统解是否存在漂移和消失。
二、可控性
可控性是指系统的响应是通过控制器实现的,系统可以通过增加输入电压或输出力量来改变系统的输出响应,从而达到预期的解决方案。
可控性分析要求系统具有足够的响应能力,可以通过增加输入电压来改变系统的行为,但它的响应有限制,不能随意增加,而且可能受外界环境约束。
三、可观测性
可观测性是指系统的特性是可以通过测量来获取的,即可以观察系统的特性,推断出它是如何变化的,并且根据以往所观察到的特征来推测它在将来的变化趋势。
可观测性分析可以使用状态空间方程,用于获得关于系统的当前及未来设计状态的量化描述,从而确定系统的特征及其变化趋势。
51. 如何分析离散控制系统的稳定性?嘿,咱们今天来聊聊怎么分析离散控制系统的稳定性这个事儿。
咱们先得搞清楚啥是离散控制系统。
简单说,就像咱们平时玩的跳格子游戏,一格一格的,不是连续的那种,这离散控制系统啊,也是这样,它的信号不是一直连着的,而是隔一段才有一个值。
那怎么去分析它稳不稳定呢?这可得有点小窍门。
咱们先来说说 z 变换,这可是个重要的工具。
就好比你有一堆杂乱的积木,通过 z 变换,能把它们整理得规规矩矩,更容易看出规律。
比如说,一个系统的传递函数,经过 z 变换,就能得到一个新的表达式,从这里咱们就能开始分析稳定性啦。
还有那个特征方程,这就像是系统的“密码锁”。
如果能解开这个方程,找到它的根,就能知道系统稳不稳定。
要是这些根都在单位圆内,那系统就是稳定的;要是有根跑到单位圆外面去了,那可就麻烦喽,系统就不稳定啦。
给你讲个我之前遇到的事儿吧。
有一次,我带着几个学生一起研究一个离散控制系统的稳定性。
那系统的方程复杂得让人头疼,大家一开始都有点懵。
其中有个学生特别较真儿,不停地尝试各种方法,一会儿画个图,一会儿又算一堆式子。
我就在旁边看着,偶尔给他们一点小提示。
最后啊,经过大家的努力,终于找到了关键所在,成功分析出了系统的稳定性。
那一瞬间,大家的脸上都洋溢着成就感,那种感觉可太棒了!再说说 Jury 判据,这也是个分析稳定性的好帮手。
它就像是一个精准的测量尺,能帮咱们准确判断系统的根是不是都在单位圆内。
总之啊,分析离散控制系统的稳定性,需要咱们掌握好这些工具和方法,多动手多思考。
就像解一道复杂的谜题,只要有耐心,有方法,总能找到答案的。
希望今天讲的这些能让你对分析离散控制系统的稳定性有更清楚的认识,加油哦!。
实验一 离散系统稳定性分析实验学时:2 实验类型:常规 实验要求:必作一、实验目的:(1)掌握利用MATLAB 绘制系统零极点图的方法; (2)掌握离散时间系统的零极点分析方法;(3)掌握用MATALB 实现离散系统频率特性分析的方法; (4)掌握逆Z 变换概念及MATLAB 实现方法; (5)掌握用MATLAB 分析离散系统稳定性。
二、实验原理:1、离散系统零极点图及零极点分析;线性时不变离散系统可用线性常系数差分方程描述,即()()NMiji j a y n i b x n j ==-=-∑∑ (8-1)其中()y k 为系统的输出序列,()x k 为输入序列。
将式(8-1)两边进行Z 变换的00()()()()()Mjjj Nii i b zY z B z H z X z A z a z-=-====∑∑ (8-2) 将式(8-2)因式分解后有:11()()()Mjj Nii z q H z Cz p ==-=-∏∏ (8-3)其中C 为常数,(1,2,,)j q j M =为()H z 的M 个零点,(1,2,,)i p i N =为()H z 的N个极点。
系统函数()H z 的零极点分布完全决定了系统的特性,若某系统函数的零极点已知,则系统函数便可确定下来。
因此,系统函数的零极点分布对离散系统特性的分析具有非常重要意义。
通过对系统函数零极点的分析,可以分析离散系统以下几个方面的特性:● 系统单位样值响应()h n 的时域特性; ● 离散系统的稳定性;离散系统的频率特性; 1.1、零极点图的绘制设离散系统的系统函数为则系统的零极点可用MA TLAB 的多项式求根函数roots()来实现,调用格式为:p=roots(A)其中A 为待根求多项式的系数构成的行矩阵,返回向量p 则是包含多项式所有根的列向量。
如多项式为231()48B z z z =++,则求该多项式根的MA TLAB 命令为为: A=[1 3/4 1/8];P=roots(A) 运行结果为: P =-0.5000 -0.2500需注意的是,在求系统函数零极点时,系统函数可能有两种形式:一种是分子、分母多项式均按z 的降幂次序排列;另一种是分子、分母多项式均按1z -的升幂次序排列。
离散时间系统的可控性及其稳定性分析研究一、引言离散时间系统(discrete-time system)是指在时间上取样的系统,指的是在时域上离散且在幅度上是连续的信号,是一类重要的时域系统。
在日常生活中,我们常常会遇到离散时间系统,例如数字电子、数字通信、数字信号处理等领域。
离散时间系统的可控性及其稳定性是该领域热门的研究方向之一,本文将从两方面进行探讨。
二、离散时间系统的可控性1.可控性的定义可控性是指系统在一定时间内,能否通过其输入信号来达到所需状态,并且可以在该状态下保持一定的时间。
在离散时间系统中,可控性的定义与连续时间系统中的可控性类似,但并不能简单地借鉴连续时间系统的定义。
2.可控性的判定(1)Kalman条件Kalman条件是判定离散时间系统可控性的重要方法。
在离散时间系统中,若一个初态能够通过一个有限时间内的控制输入到达系统的任意状态,则称该系统是可控的。
用数学语言描述,即离散时间系统可控的条件是:矩阵 Cont(A,B) 的秩等于 n,其中 A 和B 是系统的状态矩阵和输入矩阵,n 是系统的状态维数。
(2)PBH条件PBH条件是判定离散时间系统可控性的另一种方法。
与Kalman条件相比,PBH条件更加简便,适用于各种规范矩阵A和B.给定一个离散时间系统,我们可以将可控性矩阵写成:$$ \begin{bmatrix} A - \lambda_i I & B \end{bmatrix} $$式中,I 是单位矩阵,λi 是系统的特征值,B 是系统的输入矩阵。
若该矩阵的秩等于系统状态维数 n,则该系统可控。
三、离散时间系统的稳定性1.稳定性的定义稳定性是指系统输入和状态状态在有限范围内的变化,系统的输出也会随之保持在一个有限的范围。
2.稳定性的性质(1)稳定性的充分条件离散时间系统可控的充分条件是系统的特征值均在单位圆内。
(2)稳定性的判定常用的离散时间系统稳定性判定方法有 Jury准则和Nyquist准则。
线性离散控制系统的稳定性分析在控制工程中,稳定性是占据重要地位的概念之一。
对于线性离散控制系统而言,稳定性分析显得尤为关键。
在本文中,我们将讨论线性离散控制系统的稳定性分析。
线性离散控制系统由两个部分组成,一个是系统本身,另一个是控制器。
这两个部分共同作用,以使系统能够正常运行,达到预定的控制目标。
而稳定性则是在这一过程中,确保系统在特定的条件下能够保持稳定。
线性离散控制系统一般是在时刻 t 时,通过一个输入信号 u(t) 来控制输出信号 y(t)。
由此可以得到系统的状态空间方程式:x(t+1) = Ax(t) + Bu(t)y(t) = Cx(t)其中,x(t) 是状态向量,它包含系统中所有的状态信息。
A 和B 是状态转移矩阵,用于描述状态向量在时间上的演变。
C 则是输出端的转移矩阵,用于描述系统输出与状态向量之间的关系。
而 u(t) 则是控制器的输入信号,通过控制器的处理,最终得到系统的输出 y(t)。
对于任意给定的系统,其稳定性是需要依据系统本身的特性来分析的。
这里我们将从两个方面来讨论线性离散控制系统的稳定性分析。
分别为:利用特征值和易于分析的特殊情况。
一、利用特征值进行稳定性分析通过特征值,可以很方便地判断一个系统是否稳定。
特征值的计算公式如下:det(A-λI) = 0其中,det() 是矩阵的行列式,A 是状态转移矩阵,λ 是特征值,I 是单位矩阵。
特征值通常是由状态转移矩阵的特征多项式所产生的根。
如果计算出来的特征值都处于单位圆内,那么这个系统就是稳定的。
反之,如果特征值的模超过了 1,则这个系统就是不稳定的。
此外,还存在一种特殊情况,即状态转移矩阵的特征值都是实数。
在这种情况下,我们只需要检测特征值是否位于区间 [-1,1] 中即可。
如果全部都满足此条件,那么系统就是稳定的。
二、特殊情况下的稳定性分析对于线性离散控制系统而言,有一些特殊情况下可以使用更为简便的方法来进行稳定性分析。
离散时间系统的稳定性分析离散时间系统是一种在离散时间点上进行状态变化的系统,与连续时间系统相对应。
稳定性分析是对系统行为的一个重要特征进行评估和判断的过程。
对于离散时间系统的稳定性分析,我们可以通过不同方法进行研究和判断,如利用差分方程、状态空间法、Lyapunov稳定性理论等。
本文将从这些角度出发,深入探讨离散时间系统的稳定性分析方法。
一、差分方程法差分方程法是一种基于离散时间点上变量之间的差分关系进行稳定性分析的方法。
对于离散时间系统,我们可以通过建立差分方程来描述系统的动态行为。
一般而言,稳定的离散时间系统在各个时间点上的状态变量都保持在某个有界范围内。
因此,我们可以通过差分方程的解析解或数值解来判断系统的稳定性。
二、状态空间法状态空间法是一种通过描述系统在不同离散时间点上状态变化的方法。
在状态空间中,系统的状态由一组关于时间的差分方程表示。
通过对系统状态进行迭代,我们可以从初始状态推导出系统在未来时间点上的状态。
根据这些状态的变化,我们可以判断系统是否稳定。
三、Lyapunov稳定性理论Lyapunov稳定性理论是一种通过利用Lyapunov函数来判断离散时间系统稳定性的方法。
Lyapunov函数是一个用于衡量系统状态的能量函数,它在系统稳定时具有稳定性的性质。
通过构造和分析Lyapunov函数,我们可以判断离散时间系统是否稳定。
如果能够找到一个Lyapunov函数,使得对于系统的每一个状态,该函数都是非负的,并且沿着系统的状态变化轨迹递减,那么系统就是稳定的。
四、其他稳定性分析方法除了以上介绍的几种常见方法外,还存在其他一些稳定性分析方法,如频率域方法、随机系统稳定性分析等。
这些方法可以根据具体问题的需求进行选择和应用,从而更好地评估离散时间系统的稳定性。
综上所述,离散时间系统的稳定性分析是研究系统动态行为的一个重要问题。
通过差分方程法、状态空间法、Lyapunov稳定性理论以及其他稳定性分析方法,我们可以对离散时间系统的稳定性进行全面评估和判断。
实验名称:离散系统的稳定性分析
系专业班
姓名学号授课老师
预定时间2014-5-27
实验时
间
2014-5-27 实验台号
一、目的要求
1.掌握香农定理,了解信号的采样保持与采样周期的关系。
2.掌握采样周期对采样系统的稳定性影响。
二、原理简述
1.信号的采样保持:
电路图:
连续信号x(t) 经采样器采样后变为离散信号x*(t),香农(Shannon) 采样定理指出,离散信号x*(t)可以完满地复原为连续信号条件为:ωs≥2ωmax
式中ωS 为采样角频率,且,(T 为采样周期),ωmax为连续信号x (t)
的幅频谱| x (jω)| 的上限频率T s
若连续信号x (t) 是角频率为ωS = 2π ⨯ 2.5 的正弦波,它经采样后变为x*(t),则x*(t) 经保持器能复原为连续信号的条件是采样周期,[正弦波
ωmax=ωS=5 π ],所以
2、闭环采样控制系统
电路图:
闭环采样系统的开环脉冲传递函数为:
闭环脉冲传递函数为:
闭环采样系统的特征方程式为:
特征方程式的根与采样周期T 有关,若特征根的模均小于1,则系统稳定,若有一个特征根的模大于1,则系统不稳定,因此系统的稳定性与采样周期T 的大小有关。
三、仪器设备
PC机一台,TD-ACC+(或TD-ACS)教学实验系统一套。
四、内容步骤
1.准备:将信号源单元的“ST”的插针和“+5V”插针用“短路块”短接。
2.信号的采样保持实验步骤
(1) 按图接线。
检查无误后开启设备电源。
(2) 将正弦波单元的正弦信号(将频率调为2.5HZ) 接至LF398 的输入端“IN1”。
(3) 调节信号源单元的信号频率使“S”端的方波周期为20ms 即采样周期T =
20ms。
(4) 用示波器同时观测LF398 的OUT1 输出和IN1 输入,此时输出波形和输入波形一致。
(5) 改变采样周期,直到200ms,观测输出波形。
此时输出波形仍为输入波形的采样波形,还未失真,但当T > 200ms 时,没有输出波形,即系统采样失真,从而验证了香农定理。
3.闭环采样控制系统实验步骤
(1) 按图接线。
检查无误后开启设备电源。
(2) 取“S”端的方波信号周期T = 20ms。
(3) 阶跃信号的产生:产生1V 的阶跃信号。
(4) 加阶跃信号至r (t),按动阶跃按钮,观察并记录系统的输出波形c (t),测量超调量Mp。
(5) 调节信号源单元的“S”信号频率使周期为50ms 即采样周期T = 50ms。
系统
加入阶跃信号,观察并记录系统输出波形,测量超调量Mp。
(6) 调节采样周期使T = 120ms,观察并记录系统输出波形。
五、数据处理
1、信号的采样保持
采样周期T=1ms:
采样周期T=100ms:
采样周期T=200ms:
2、闭环采样控制系统方波信号周期T=20ms:
方波信号周期T=50ms:
方波信号周期T=120ms:
六、分析讨论
当选取的采样周期瞒足香农采样周期的条件是,系统不是真,当选取的采样周期不满足香浓采样周期是,系统产生较大的失真。