开环频率特性与系统时域指标的关系
- 格式:ppt
- 大小:2.41 MB
- 文档页数:22
@~@自动控制原理知识点总结第一章1.什么是自动控制?〔填空〕自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?〔填空〕开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?〔分析题:对一个实际的控制系统,能够参照下列图画出其闭环控制方框图。
〕4.控制系统的性能指标主要表现在哪三个方面?各自的定义?〔填空或判断〕〔1〕、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力〔2〕、快速性:通过动态过程时间长短来表征的e来表征的〔3〕、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?〔填空〕微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?〔1〕、确定系统的输入变量和输入变量〔2〕、建立初始微分方程组。
即根据各环节所遵循的根本物理规律,分别列写出相应的微分方程,并建立微分方程组〔3〕、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
〔填空或选择〕传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种根本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9〔a〕、〔e〕、〔f〕。
〔化简〕等效变换,是指被变换局部的输入量和输出量之间的数学关系,在变换前后保持不变。
4.6 频率特性与系统的动态性能4.6 频率特性与系统的动态性能控制系统的频率特性与系统的动态性能之间有密切的关系。
分析控制系统的动态特性,可以利用开环频率特性,也可以利用闭环频率特性。
二阶系统的频率特性与动态性能的时域指标之间又确定的关系,而高阶系统则不存在确定的函数关系。
4.6.1 开环频率特性与系统的动态响应若把系统的开环对数频率特性划分为低频段,中频段和高频段,这三部分对控制系统动态过程的影响是不同的。
开环频率特性的低频段主要影响阶跃响应动态过程的最后阶段,而开环频率特性的高频段主要影响阶跃响应动态过程的起始阶段。
对动态性能影响最重要的是中频段。
所以,常用开环频率的低频段估计系统的稳态性能,而用中频段估计系统的动态响应。
开环频率特性的低频段通常指第一个转折频率前的频段。
这一频段的对数幅频特性质取决于系统的积分环节和放大系数。
图4.29是开环频率特性低频段的几种情况。
图4.29 开环频率特性的低频段图 4.29(a)所示的系统低频段是平行于横轴的直线。
这说明系统中不含积分环节,是零型系统。
这种系统的单位阶跃响应是有误差的,而且可以根据对数幅频特性确定放大系数K,从而计算出系统的稳态误差。
图4.29(b)所示的系统,由于低频段的斜率为-20dB/十倍频程,可以断定系统含有一个积分环节,是Ⅰ型环节。
系统的放大系数可在处求得。
稳态误差可按Ⅰ型系统计算。
图4.29(c)所示的系统是Ⅱ型系统,系统的放大系数可按求取或在对数幅频特性曲线-40dB/十倍频程与轴的交点处求取,此时有。
系统的稳态误差按Ⅱ型系统的稳态误差计算。
开环频率特性曲线的中频段是截止频率附近的频段,截止频率就是使的频率。
即幅值曲线穿越零分贝线的频率。
这一频段,对数幅频特性的形状直接影响到系统的稳定裕量。
从而对系统动态响应过程的主要性能指标产生影响。
用开环频率特性中频段评价控制系统的动态性能,常用到的就是截止频率(穿越频率)和相位裕量。
5.7 频域性能指标和时域性能指标的关系频率响应法是通过系统的开环频率特性和闭环频率特性的一些特征量间接地表征系统的瞬(暂)态响应的性能,因而这些特征量又被称为频域性能指标。
常用的频域性能指标有幅值裕度、相位裕度、谐振峰值、谐振频率和频带宽度等。
虽然这些指标没有时域性能指标那样直观,但在二阶系统中,它们与时域性能指标有着确定的对应关系,对于高阶系统,也有近似的关系。
5.7.1频域指标和二阶系统的过渡过程指标设二阶单位反馈系统的方框图如图5-80所示。
图 5-80 二阶单位反馈系统的方框图此系统的闭环传递函数为2222)()(nn n s s s X s Y ωξωω++= 其中ξ为阻尼比,n ω为无阻尼自然振荡频率。
令s j =ω代入上式,可得系统的闭环频率响应为:ja n nM j j X j Y e 2)1(1)()(22=+-=ωωξωωωω式中 M nn =-+1122222()()ωωξωω2212a r c t a n nn ωωωωξα--= 根据式(5-67)可知,当00707≤≤ξ.时,在谐振频率ωr 处,M 出现峰值ωωξr n =-122M r =-1212ξξ二阶系统的闭环频率特性如图5-81所示。
图 5-81 图5-80所示系统的闭环频率特性对于二阶系统,在012≤<ξ时,频率特性的谐振峰值M r 可以反映系统的阻尼系数ξ,而其谐振频率ωr 可以反映给定ξ对应的自然频率ωn ,从而也能反映响应速度。
这样就可把二阶系统闭环频率特性的M r 和ωr 当作性能指标用。
系统的频带宽度(带宽)由图5-81可见,当ωω>r 时,闭环频率特性的幅值M 单调下降。
当闭环频率特性的幅值下降到707.021==M 时,或者说,当闭环频率特性的分贝值下降到零频率时分贝值以下3分贝时,对应的频率ωb 称为截止频率,又称带宽频率。
此时有b j M j M ωωω>-<3)0(lg 20)(lg 20对于0)0(lg 20=j M ,有b j M ωωω>-<3)(lg 20系统对频率高于ωb 的输入衰减很大,只允许频率低于ωb 的输入通过。
5.6 利用开环频率特性分析系统的性能在频域中对系统进行分析、设计时,通常是以频域指标作为依据的,但是不如时域指标来得直接、准确。
因此,须进一步探讨频域指标与时域指标之间的关系。
考虑到对数频率特性在控制工程中应用的广泛性,本节将以Bode 图为基点,首先讨论开环对数幅频特性)(ωL 的形状与性能指标的关系,然后根据频域指标与时域指标的关系估算出系统的时域响应性能。
实际系统的开环对数幅频特性)(ωL 一般都符合如图5-49所示的特征:左端(频率较低的部分)高;右端(频率较高的部分)低。
将)(ωL 人为地分为三个频段:低频段、中频段和高频段。
低频段主要指第一个转折点以前的频段;中频段是指穿越频率(或截止频率)c ω附近的频段;高频段指频率远大于c ω的频段。
这三个频段包含了闭环系统性能不同方面的信息,需要分别进行讨论。
需要指出,开环对数频率特性三频段的划分是相对的,各频段之间没有严格的界限。
一般控制系统的频段范围在Hz 100~01.0之间。
这里所述的“高频段”与无线电学科里的“超高频”、“甚高频”不是一个概念。
5.6.1 )(ωL 低频渐近线与系统稳态误差的关系系统开环传递函数中含积分环节的数目(系统型别)确定了开环对数幅频特性低频渐近线的斜率,而低频渐近线的高度则取决于开环增益的大小。
因此,)(ωL 低频段渐近线集中反映了系统跟踪控制信号的稳态精度信息。
根据)(ωL 低图5-49 对数频率特性三频段的划分频段可以确定系统型别υ和开环增益K ,利用第3章中介绍的静态误差系数法可以确定系统在给定输入下的稳态误差。
5.6.2 )(ωL 中频段特性与系统动态性能的关系开环对数幅频特性的中频段是指穿越(或截止)频率c ω附近的频段。
设开环部分纯粹由积分环节构成,图5-50(a )所示的对数幅频特性对应一个积分环节,斜率为dec dB /20-,相角 90)(-=ωϕ,因而相角裕度 90=γ;图5-50(b )的对数幅频特性对应两个积分环节,斜率为dec dB /40-,相角 180)(-=ωϕ,因而相角裕度 0=γ。