系统的频率特性分析
- 格式:ppt
- 大小:9.09 MB
- 文档页数:81
第四章 频率特性分析4.1 什么是频率特性?解 对于线性定常系统,若输入为谐波函数,则其稳态输出一定是同频率的谐波函数,将输出的幅值与输入的幅值之比定义为系统的幅频特性;将输出的相位于输入的相位之差定义为系统的相频特性。
将系统的幅频特性和相频特性统称为系统的频率特性。
4.2 什么叫机械系统的动柔度,动刚度和静刚度?解 若机械系统的输入为力,输出为位移(变形),则机械系统的频率特性就是机械系统的动柔度;机械系统的频率特性的倒数就是机械系统的动刚度;当0=w 时,系统频率特性的倒数为系统的静刚度。
4.3已知机械系统在输入力作用下变形的传递函数为 12+s (mm/kg),求系统的动刚度,动柔度和静刚度。
解 根据动刚度和动柔度的定义有 动柔度()()()12+====jw jw s s G jw G jw λ mm/kg 动刚度 )(jw K =)(1jw G =21+jw kg/mm 静刚度 ()()5.0021010==+====K w jw w jw G w jw kg/mm4.4若系统输入为不同频率w 的正弦函数Asinwt,其稳态输出相应为Bsin(wt+ϕ).求该系统的频率特性。
解:由频率特性的定义有 G (jw )=AB e jw。
4.5已知系统的单位阶跃响应为)(。
t x =1-1.8te 4-+0.8te9-,试求系统的幅辐频特性与相频特性。
解:先求系统的传递函数,由已知条件有)(。
t x =1-1.8te 4-+0.8te9-(t 0≥))(S X i =s 1)(。
S X =s 1-1.841+s +0.891+s )(S G =)()(。
S X S X =()()9436++s s )(jw G =jw s s G =)(=()()jw jw ++9436)(w A =)(jw G =22811636ww +•+)(w ϕ=0-arctan 4w -arctan 9w =-arctan 4w -arctan 9w4.6 由质量、弹簧、阻尼器组成的机械系统如图所示。
一二阶系统频率特性测试与分析一、引言二阶系统是控制系统中常见的一种类型,它的频率特性对系统的稳定性和性能具有重要影响。
频率特性测试是分析系统动态响应的重要手段之一,通过对二阶系统进行频率特性测试和分析,可以获取系统的幅频特性和相频特性,进一步了解系统的稳定性和性能指标。
本文将介绍二阶系统频率特性测试的基本原理和方法,并通过实例进行分析。
二、二阶系统频率特性测试原理二阶系统是由两个一阶系统级联组成的复合系统,其传递函数可以表示为:G(s)=K/((s+a)(s+b))其中K为系统的增益,a和b为系统的两个极点。
二阶系统的频率特性可以通过系统的幅频特性和相频特性来描述。
1.幅频特性:幅频特性反映了系统对不同频率输入信号的增益响应。
在频率特性测试中,可以通过给系统输入正弦信号,并测量系统输出信号的幅值与输入信号的幅值之比来得到系统的幅频特性。
一般情况下,可以使用频率响应仪或示波器进行测量。
2.相频特性:相频特性反映了系统对不同频率输入信号的相位响应。
在频率特性测试中,可以通过测量系统输出信号与输入信号的相位差来得到系统的相频特性。
一般情况下,可以使用频率响应仪或示波器进行测量。
三、二阶系统频率特性测试方法二阶系统的频率特性测试方法主要有两种,一种是激励法,另一种是响应法。
1.激励法:激励法是通过给系统输入不同频率的正弦信号,并测量系统的输出响应来获取系统的频率特性。
具体步骤如下:(1)设置输入信号的幅值和频率范围;(2)给系统输入不同频率的正弦信号,并记录系统的输出响应;(3)根据记录的数据,绘制系统的幅频特性曲线和相频特性曲线。
2.响应法:响应法是通过给系统输入一个周期或多个周期的脉冲信号,并测量系统的输出响应的特性来获取系统的频率特性。
具体步骤如下:(1)设置输入信号的幅值、频率和脉冲宽度;(2)给系统输入一个周期或多个周期的脉冲信号,并记录系统的输出响应;(3)根据记录的数据,绘制系统的幅频特性曲线和相频特性曲线。
竭诚为您提供优质文档/双击可除控制系统的频率特性分析实验报告篇一:控制系统频率特性实验实验名称控制系统的频率特性实验序号3实验时间学生姓名学号专业班级年级指导教师实验成绩一、实验目的:研究控制系统的频率特性,及频率的变化对被控系统的影响。
二、实验条件:1、台式计算机2、控制理论&计算机控制技术实验箱ThKKL-4系列3、ThKKL仿真软件三、实验原理和内容:1.被测系统的方块图及原理被测系统的方块图及原理:图3—1被测系统方块图系统(或环节)的频率特性g(jω)是一个复变量,可以表示成以角频率ω为参数的幅值和相角。
本实验应用频率特性测试仪测量系统或环节的频率特性。
图4—1所示系统的开环频率特性为:采用对数幅频特性和相频特性表示,则式(3—2)表示为:将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输入端[r(t)],然后分别测量相应的反馈信号[b(t)]和误差信号[e(t)]的对数幅值和相位。
频率特性测试仪测试数据经相关器件运算后在显示器中显示。
根据式(3—3)和式(3—4)分别计算出各个频率下的开环对数幅值和相位,在半对数坐标纸上作出实验曲线:开环对数幅频曲线和相频曲线。
根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。
所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。
如果测量所得的相位在高频(相对于转角频率)时不等于-90°(q-p)[式中p和q分别表示传递函数分子和分母的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。
2.被测系统的模拟电路图被测系统的模拟电路图:见图3-2注意:所测点-c(t)、-e(t)由于反相器的作用,输出均为负值,若要测其正的输出点,可分别在-c(t)、-e(t)之后串接一组1/1的比例环节,比例环节的输出即为c(t)、e(t)的正输出。
第四章系统的频率特性分析第四章系统的频率特性分析时间响应分析:主要用于分析线性系统的过渡过程,以时间t为独立变量,通过阶跃或脉冲输入作用下系统的瞬态时间响应来研究系统的性能;依据的数学模型为G(s)频率特性分析:以频率ω为独立变量,通过分析不同的谐波输入时系统的稳态响应来研究系统的性能;依据的数学模型为G(jω)频域分析的基本思想:把系统输入看成由许多不同频率的正弦信号组成,输出就是系统对不同频率信号响应的总和。
4.1频率特性概述1.频率响应与频率特性(1)频率响应:线性定常系统对谐波输入的稳态响应。
(frequencyresponse)对稳定的线性定常系统输入一谐波信号xi(t)=Xisin?t稳态输出(频率响应):xo(t)=Xo(?)sin[ωt+?(ω)]【例】设系统的传递函数为输入谐波信号xi(t)=Xisin?t 则稳态输出(频率响应)与输入信号的幅值成正比与输入同频率,相位不同进行laplace逆变换,整理得同频率?幅值比A(?)相位差?(?)ω的非线性函数(揭示了系统的频率响应特性)输入:xi(t)=Xisinωt稳态输出(频率响应):xo(t)=XiA(?)sin[ωt+?(ω)]幅频特性:稳态输出与输入谐波的幅值比相频特性:稳态输出与输入谐波的相位差?(?)[s]A(?)?(?)(2)频率特性:对系统频率响应特性的描述(frequencycharacteristic)频率特性定义为ω的复变函数,幅值为A(?),相位为?(?)。
输入谐波函数xi(t)=Xisin?t,其拉式变换为2.频率特性与传递函数的关系设系统的微分方程为:则系统的传递函数为:则由数学推导可得出系统的稳态响应为根据频率特性定义,幅频特性和相频特性分别为故G(j?)=?G(j?)?ej?G(j?)就是系统的频率特性如例1,系统的传递函数为所以3.频率特性的求法(1)频率响应→频率特性稳态输出(频率响应)故系统的频率特性为或表示为(2)传递函数→频率特性将传递函数G(s)中的s换成jω,得到频率特性G(jω)。
146第5章 线性系统的频域分析与校正时域分析法具有直观、准确的优点。
如果描述系统的微分方程是一阶或二阶的,求解后可利用时域指标直接评估系统的性能。
然而实际系统往往都是高阶的,要建立和求解高阶系统的微分方程比较困难。
而且,按照给定的时域指标设计高阶系统也不是容易实现事。
本章介绍的频域分析法,可以弥补时域分析法的不足。
频域法是基于频率特性或频率响应对系统进行分析和设计的一种图解方法,故又称为频率响应法。
频率法的优点较多。
首先,只要求出系统的开环频率特性,就可以判断闭环系统是否稳定。
其次,由系统的频率特性所确定的频域指标与系统的时域指标之间存在着一定的对应关系,而系统的频率特性又很容易和它的结构、参数联系起来。
因而可以根据频率特性曲线的形状去选择系统的结构和参数,使之满足时域指标的要求。
此外,频率特性不但可由微分方程或传递函数求得,而且还可以用实验方法求得。
这对于某些难以用机理分析方法建立微分方程或传递函数的元件(或系统)来说,具有重要的意义。
因此,频率法得到了广泛的应用,它也是经典控制理论中的重点内容。
5.1 频率特性的基本概念5.1.1 频率特性的定义为了说明什么是频率特性,先看一个R -C 电路,如图5-1所示。
设电路的输入、输出电压分别为()r u t 和()c u t ,电路的传递函数为 ()1()()1c r U s G s U s Ts ==+ 式中,RC T =为电路的时间常数。
若给电路输人一个振幅为X 、频率为ω的正弦信号 即: ()sin r u t X t ω= (5-1) 当初始条件为0时,输出电压的拉氏变换为图5-1 R C -电路1472211()()11c r X U s U s Ts Ts s ωω==⋅+++ 对上式取拉氏反变换,得出输出时域解为()22()arctan 1t T c XT u t e t T T ωωωω-=+-+ 上式右端第一项是瞬态分量,第二项是稳态分量。
第五章系统的频率特性分析本章目录5.1 频率特性5.2 对数坐标图5.3 极坐标图5.4 乃奎斯特稳定判据5.5 相对稳定性分析5.6 频域性能指标和时域性能指标的关系小结本章简介在经典的控制系统分析方法中,有两种基本方法是可以不需解微分方程而可对控制系统的性能进行分析和校正的:其一是上一章的根轨迹法,其二即本章介绍的频率特性分析法。
频率响应法是一种工程方法,是以传递函数为基础的一种控制系统分析方法。
这种方法不仅能根据系统的开环频率特性图形直观地分析系统的闭环响应,而且还能判别某些环节或参数对系统性能的影响,提示改善系统性能的信息。
控制系统的频域分析方法不仅可以对基于机理模型的系统性能进行分析,也可以对来自于实验数据的系统进行有效分析。
它同根轨迹法一样是又一种图解法,研究的主要手段有极坐标图(Nyquist图)和伯德图(Bode图)法。
与其它方法相比较,频率响应法还具有如下的特点:1)频率特性除可以由前述传递函数确定外,也可以用实验的方法来确定,这对于难以列写微分方程式的元部件或系统来说,特别便于工程上的应用。
2)由于频率响应法主要是通过开环频率特性的图形对系统进行分析,因而具有形象直观和计算量较少的特点。
3)频率响应法不仅适用于线性定常系统,而且还适用于传递函数不是有理数的纯滞后系统和部分非线性系统的分析。
由于上述的特点,频率响应法不仅至今仍为控制理论中的一个重要内容,而且它的有关理论和分析方法已经广泛应用于鲁棒多变量系统和参数不确定系统等复杂系统的研究中。
本章我们将在介绍控制系统频率特性的基本概念后,着重于开环控制系统的频率特性分析:极坐标图(Nyquist图)和半对数坐标图(Bode图),同时将应用Matlab工具分析控制系统的频率特性,最后简要分析开环控制系统的频率特性与闭环控制系统的频率特性的关系,并研究它们与控制系统性能指标的关系。
5.1频率特性频率特性又称频率响应,它是指系统或元件对不同频率的正弦输入信号的响应特性。
实验一一、实验名称:低通滤波系统的频率特性分析二、实验目的:1、观察理想低通滤波器的单位冲激响应与频谱图。
2、观察RC低通网络的单位冲激响应与频谱图。
三、实验原理:(写报告时这部分要详细写并要求有必要的推导过程)1、理想低通的单位冲激响应为Sa(t-t0)函数,幅频特性在通带内为常数,阻带内为零。
在截止频率点存在阶跃性跳变。
相频特性为通过原点斜率为-wt0的直线。
2、实际物理可实现的RC低通网络通带阻带存在过渡时间,与RC时间常数有关,通带阻带也不再完全是常数。
相频特性为通过原点的曲线。
(在原点附近近似直线)。
四、实验步骤:1、打开MA TLAB软件,建立一个M文件。
2、MA TLAB所在目录的\work子目录下建立一个名为heaviside的M文件,创建子程序函数。
4、建立一个新的M文件,编写主程序并保存。
5、运行主程序,观察理想低通滤波器及实际RC低通滤波电路的单位冲激响应与频谱图。
并记录实验结果。
五、实验结果:(见附录B)六、思考题:1、理想低通滤波器的幅频曲线和相频曲线有什么特点?2、实际RC低通与理想低通滤波器的频谱有何不同?为什么?3、在实验中的低通网络RC时间常数是多少?对低通滤波器有何影响?(A) 实验程序1、子程序[定义阶跃函数]function f=heaviside(t)f=(t>0);2、主程序[分别对理想低通和实际低通作图:h(t)、|H(jω)|、φ(ω)] %理想低通滤波器的单位冲激响应、幅频特性、相频特性。
syms t f w;figure(1)f=sin(t-1)/(t-1); Fw=fourier(f); %傅立叶变换x=[-20:0.05:20]; fx=subs(f,t,x);subplot(2,1,1);plot(x,fx); %波形图grid;W=[-4:0.01:4]; FW=subs(Fw,w,W);subplot(2,2,3);plot(W,abs(FW)); %幅频特性grid;xlabel(' 频率');ylabel(' 幅值');subplot(2,2,4);plot(W,angle(FW)); %相频特性grid;xlabel(' 频率');ylabel(' 相位');%RC低通网络的单位冲激响应、幅频特性、相频特性figure(2)f=exp(-2*t)*sym('Heaviside(t)');Fw=fourier(f); %傅立叶变换x=[-4:0.02:4]; fx=subs(f,t,x);subplot(2,1,1);plot(x,fx); %波形图grid;W=[-4:0.02:4];FW=subs(Fw,w,W);subplot(2,2,3);plot(W,abs(FW)); %幅频特性grid;xlabel(' 频率');ylabel(' 幅值');subplot(2,2,4);plot(W,angle(FW)); %相频特性grid;xlabel(' 频率');ylabel(' 相位');(B) 运行结果图1 理想低通滤波器的单位冲激响应及频率特性图2 RC低通滤波电路的单位冲激响应及频率特性。