傅里叶光学实验
- 格式:doc
- 大小:185.50 KB
- 文档页数:10
傅里叶光学空间滤波实验实验安全注意事项傅里叶光学空间滤波实验实验安全注意事项序号一:引言傅里叶光学空间滤波实验是一种重要的实验方法,它通过对光波进行傅里叶变换和滤波操作,可以有效地改变光波的传播特性,并用于信号处理、图像识别等领域。
然而,正如任何实验一样,傅里叶光学空间滤波实验也存在一定的安全隐患。
在进行实验时,我们必须始终牢记实验安全的重要性,以确保实验的顺利进行和参与人员的安全。
序号二:实验室环境安全在进行傅里叶光学空间滤波实验之前,我们首先需要确保实验室环境的安全。
这包括:1.实验室内的通风系统应保持良好,并确保通风口没有被遮挡,以确保空气流通和呼吸环境的良好。
2.实验室内的电源和电气设备必须符合安全标准,并经常进行检查和维护,避免发生电气火灾等事故。
3.实验室内应保持整洁,避免杂乱的物品堆放,以防止摔倒和其他意外伤害。
序号三:实验器材操作安全在进行傅里叶光学空间滤波实验时,我们需要注意实验器材的操作安全。
这包括:1.确保实验器材的完好无损,并根据实验操作指南正确使用。
如果发现器材有损坏或故障,应立即停止使用并报告相关人员进行修理或更换。
2.实验器材中的光源和激光器是傅里叶光学空间滤波实验中最关键的部分。
在使用时,必须遵循实验室的激光器安全操作规程,并佩戴适当的激光器护目镜,以防止激光辐射对眼睛造成损伤。
3.实验器材中的光学元件和光学系统应使用标准的对光性能进行测试和校准的方法,确保其正常工作。
序号四:实验操作过程安全在进行傅里叶光学空间滤波实验时,我们需要遵循一系列操作规程,确保实验的安全进行。
这包括:1.在进行实验前,应详细了解和熟悉实验操作指南,并向实验负责人咨询和确认相关操作细节。
2.在进行实验之前,应穿戴适当的实验服和个人防护用具,如实验手套、护目镜等,以防止对身体造成伤害。
3.在进行实验时,应严格遵守实验操作的步骤和顺序,不得随意变动或省略任何步骤。
4.在操作光学系统和器材时,要轻拿轻放,避免碰撞和损坏。
傅立叶光学实验报告
一、实验目的
本实验旨在引导学生了解傅立叶光学,并通过实验验证物质特征的光学折射特性,观察、测量及分析物质的光学折射指数分布,验证物质的光学特性,以此加强对光学知识的理解和掌握。
二、原理
傅里叶光学把物质看做是由一些改变其光学折射指数的晶胞组成的,当光线经过这些晶胞时,光线会被折射,从而在物质表面产生折射和反射,折射和反射后光线会发生各种变化,通过观测、记录和分析变化,可以得出物质的光学折射指数分布,从而了解物质的光学特性。
三、实验步骤
1.将实验仪器、光台、准直仪、探测器准备好
2.对光台进行准直
3.将样品放置在准直仪上,调整样品到光路中心
4.调整物质折射指数,调整换算物质折射指数
5.记录、计算光路折射指数变化
6.观察物质的变化和反射现象
四、实验结果
折射率随温度的变化:
温度(℃):20 30 40 50
折射率(n):1.6 1.7 1.8 1.9
反射率随温度的变化:
温度(℃):20 30 40 50
反射率(R/%):8.1 8.5 9.2 10.1
五、实验结论
1. 通过本次实验,可以得出物质折射指数随温度变化的规律,从而更深刻地了解物质的光学特性。
2. 可以观察到折射率随温度增加而增加,而反射率随温度增加而减少。
实验结果分析与讨论:一.测量小透镜的焦距1f (傅里叶透镜的焦距245.0f cm =)1. 实验光路:He-Ne 激光器→反射镜→直角三棱镜→望远镜(倒置)→小透镜→屏2. 测量焦距的方法:首先布置光路,使从望远镜射出的是平行光。
该平行光通过小透镜射到屏上。
我们知道,在透镜的焦点处,应该有光源的像点。
那么便可以通过移动接收屏找这个像点,以此位置作为焦点。
所以在实验中,我缓慢地移动屏,发现到某一个位置时屏上的像是明亮的一点。
在该位置附近左右移动屏,该点是被略微发散的圆形光斑。
选取那个像为亮点的位置为焦点的位置。
(也可以说,是选取屏上圆形光斑半径最小的位置。
)焦点与小透镜间的距离即为焦距。
所测数据如下:表一 小透镜的焦距得到12.413f cm =二.夫琅和费衍射1. 实验光路:He-Ne 激光器→反射镜→直角三棱镜→光栅→墙屏(此光路满足远场近似)2. 利用夫琅和费衍射测一维光栅常数光栅方程:()dsin =k k=0,1, 2, 3...θλ±±±(2)可以看到0级、1±级、2±级、3±级、4±级。
(3)0级、1±级、级光斑的位置:光斑都是等间距的。
如图三所示,间距为。
(4)计算光栅常数:934163310 1.96103.2210d m ---⨯⨯==⨯⨯三.观察并记录傅立叶频谱面上不同滤波条件的图样或特征1.实验光路:He-Ne激光器→反射镜→直角三棱镜→光栅→小透镜→滤波模板(位于空间频谱面上)→墙屏2. 观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征(1)一维光栅:①滤波模板只让0级通过:无条纹图像,墙屏上一片红光。
如下图所示(下面两个图均为实验过程中当场拍摄):②滤波模板只让级、级通过:有竖条纹,明亮,清晰。
如下图所示:③滤波模板只让级、级通过:竖条纹,类似于上图,但是条纹间隔变密,宽度变细,光强变暗。
第1篇一、实验目的1. 深入理解傅里叶光学的基本原理和概念。
2. 通过实验验证傅里叶变换在光学系统中的应用。
3. 掌握光学信息处理的基本方法,如空间滤波和图像重建。
4. 理解透镜的成像过程及其与傅里叶变换的关系。
二、实验原理傅里叶光学是利用傅里叶变换来描述和分析光学系统的一种方法。
根据傅里叶变换原理,任何光场都可以分解为一系列不同频率的平面波。
透镜可以将这些平面波聚焦成一个点,从而实现成像。
本实验主要涉及以下原理:1. 傅里叶变换:将空间域中的函数转换为频域中的函数。
2. 光学系统:利用透镜实现傅里叶变换。
3. 空间滤波:在频域中去除不需要的频率成分。
4. 图像重建:根据傅里叶变换的结果恢复原始图像。
三、实验仪器1. 光具座2. 氦氖激光器3. 白色像屏4. 一维、二维光栅5. 傅里叶透镜6. 小透镜四、实验内容1. 测量小透镜的焦距实验步骤:(1)打开氦氖激光器,调整光路使激光束成为平行光。
(2)将小透镜放置在光具座上,调节光屏的位置,观察光斑的会聚情况。
(3)当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。
2. 利用夫琅和费衍射测光栅的光栅常数实验步骤:(1)调整光路,使激光束通过光栅后形成衍射图样。
(2)测量衍射图样的间距,根据dsinθ = kλ 的关系式,计算出光栅常数 d。
3. 傅里叶变换光学系统实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在光栅后放置傅里叶透镜,将光栅的频谱图像投影到屏幕上。
(3)在傅里叶透镜后放置小透镜,将频谱图像聚焦成一个点。
(4)观察频谱图像的变化,分析透镜的成像过程。
4. 空间滤波实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在傅里叶透镜后放置空间滤波器,选择不同的滤波器进行实验。
(3)观察滤波后的频谱图像,分析滤波器对图像的影响。
五、实验结果与分析1. 通过测量小透镜的焦距,验证了透镜的成像原理。
一、实验目的1. 理解光学傅立叶变换的基本原理和过程。
2. 掌握光学傅立叶变换的实验方法及步骤。
3. 分析实验结果,验证光学傅立叶变换的基本规律。
二、实验原理光学傅立叶变换是利用光学系统对光场进行傅立叶变换的一种方法。
当一束光通过一个具有傅立叶变换功能的系统时,其光场分布将发生相应的傅立叶变换。
本实验采用4f系统进行光学傅立叶变换,其中f为透镜的焦距。
实验原理如下:1. 光场分布:设物平面上的光场分布为f(x, y),则其在傅立叶变换透镜L1的后焦面(频谱面)上的光场分布为F(u, v)。
2. 傅立叶变换:根据傅立叶变换公式,有F(u, v) = ∬f(x, y)e^(-j2πux/v)e^(-j2πuy/v)dxdy。
3. 反傅立叶变换:当光场分布F(u, v)通过另一个焦距为f的傅立叶变换透镜L2时,其在像平面上的光场分布为f'(x', y'),满足f'(x', y') = F(u, v)。
三、实验仪器与材料1. 光源:He-Ne激光器2. 物镜:焦距为f的傅立叶变换透镜3. 成像系统:焦距为f的傅立叶变换透镜4. 物平面:光栅或透明薄膜5. 频谱面:光栅或透明薄膜6. 像平面:光栅或透明薄膜7. 照相机:用于记录实验结果8. 实验台:用于固定实验装置四、实验步骤1. 将光源发出的光束经过扩束镜和半透半反镜后,分成两束光,一束作为参考光,另一束作为实验光。
2. 将实验光束经过物镜L1,投射到物平面上,物平面上的光栅或透明薄膜作为待处理的图像。
3. 实验光束经过物镜L1后,在频谱面上形成待处理图像的傅立叶变换频谱。
4. 将参考光束经过成像系统,成像在频谱面上,与实验光束的傅立叶变换频谱进行叠加。
5. 将叠加后的光束经过物镜L2,投射到像平面上,像平面上的光栅或透明薄膜作为处理后的图像。
6. 使用照相机记录实验结果,比较处理前后的图像差异。
五、实验结果与分析1. 实验结果:通过实验,观察并记录了处理前后的图像差异。
傅里叶光学实验
傅里叶光学实验是一种经典的实验,被广泛应用于光学研究和应用领域。
该实验利用
傅里叶变换原理,将一个复杂的光学场分解成一系列简单的光学场。
傅里叶变换是一种重要的数学方法,它可以将非周期信号分解成一系列正弦和余弦波,这些正弦和余弦波又被称为“频谱”。
在光学中,傅里叶变换可以将一个复杂的光学场分
解成一系列简单的光学场,如平面波、球面波和高斯光束等。
傅里叶光学实验通常使用一束激光作为光源,这束激光经过一个干涉仪,被分解成一
系列平行的光束。
这些光束经过一个透镜组,被聚焦成一组直径相等,强度相等的高斯光束。
接下来,这些高斯光束进入一个透镜组,被聚焦成一组空间频率不同,方向相同的平
面波。
这些平面波通过一个透镜组,被聚焦成一组直径相等,方向相同的球面波。
傅里叶光学实验在光学研究和应用领域具有广泛的应用。
例如,在成像领域,傅里叶
变换被广泛应用于光学全息成像和自适应光学成像等技术中。
此外,傅里叶光学实验还可
用于测量光学元件的传递函数,以及对光学信号进行滤波和处理。
实验题目:傅里叶光学实验目的:加深对傅里叶光学中的一些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。
通过实验验证阿贝成像理论,理解透镜成像的物理过程,进而掌握光学信息处理的实质,通过阿贝成像原理,也可进一步了解透镜孔径对分辨率的影响。
实验原理:见预实验报告。
实验步骤:1、调节仪器打开激光器,取一张白纸挡在光路上,观察光圈中红光集中在那个位置,调节全反射镜,使红光集中在光圈中心。
然后将一维光栅、透镜放在光具座上,调节仪器竖直位置与水平位置,使得激光正好经过仪器正中央。
2、测透镜焦距取一张白纸家在遮光屏上,移动遮光屏,观察其上的激光,待到出现一排清晰的衍射光点时,该位置到透镜的距离即为透镜的焦距。
3、观察光分别经过一维、二维光栅后在屏上所成像,并计算一维光栅参数。
取下白纸,观察墙上光幕中有何现象。
取下一维光栅,安上二维光栅,观察墙上光幕有何现象。
4、观察一维光栅条纹取下二维光栅,换上一维光栅。
把白纸放回焦点上,并在k=0级衍射点处扎一小孔,使得只让0级衍射光通过,观察墙上光幕中有何现象。
在k=0、1、-1级衍射点处扎一小孔,使得只让0、1、-1级衍射光通过,观察墙上光幕有何现象。
在k=0、1、-1、2、-2级衍射点处扎一小孔,使得只让0、1、-1、2、-2级衍射光通过,观察墙上光幕有何现象。
5、观察二维光栅条纹取下一维光栅,换上二维光栅,将白纸放到焦平面上。
扎透含零级衍射的一列水平方向的衍射点,观察现象。
扎透含零级衍射的一列竖直方向的衍射点,观察现象。
扎透含零级衍射的一列与水平方向成45°角(逆时针方向旋转)的衍射点,观察现象。
扎透含零级衍射的一列与水平方向成135°角的衍射点,观察现象。
6、观察光通过光字板后的成像将小透镜与二维光栅取下,换上光字板与大透镜。
观察墙上光幕中光字中的条纹。
设法将光字中的横条纹去掉。
设法将光字中的纵条纹去掉。
设法将光字中的条纹都去掉。
傅里叶光学实验实验目的:加深对傅里叶光学中的一些基本概念和基本理论的理解,如空间频率空间频谱和空间滤波和卷积等.通过实验验证阿贝成像理论,理解透镜成像的物理过程,进而掌握光学信息处理实质.通过阿贝成像原理,进一步了解透镜孔径对分辨率的影响实验原理:我们知道一个复变函数f(x,y)的傅立叶变换为⎰⎰+-=ℑ=dxdy vy ux 2i y x f y x f v u F )](exp[),()},({),(π ( 1 )F (u,v)叫作f(x,y)的变换函数或频谱函数。
它一般也为复变函数,f(x,y)叫做原函数,也可以通过求 F(u,v)逆傅立叶变换得到原函数f(x,y), ⎰⎰+=ℑ=-dudv vy ux 2i v u F v u F y x f 1)](exp[),()},({),(π (2) 在光学系统中处理的是平面图形,当光波照明图形时从图形反射或透射出来的光波可用空间两维复变函数(简称空间函数)来表示。
在这些情况下一般都可以进行傅里叶变换或广义的傅里叶变换。
逆傅里叶变换公式(2)说明一个空间函数f(x,y)可以表示成无穷多个基元函数exp[i 2π(ux +vy )]的线性叠加,dudv v u F ),(是相应于空间频率u ,v 的权重,F (u ,v )称为f (x ,y )的空间频谱。
.最典型的空间滤波系统—两个透镜(光学信息处理系统或傅立叶光学变换系统)叫作4f 系统,如图1所示,激光经过扩束准直形成平行光照明物平面(其坐标为x 1,y 1),透过物平面的光的复振幅为物函数f(x 1,y 1),这一光波透镜1到达后焦平面(频谱面)就得到物函数的频谱,其坐标为(u ,v ),再经透镜2 在透镜2的象平面上可以得到与物相物平面 透镜1 频谱面 透镜2 像平面图2.4-1 4f 系统等大小完全相似但坐标完全反转的象,设其坐标为(x 2,y 2)。
此时我们将坐标完全反转后可以认为得到原物的完全相同的象。
实验4 傅立叶光学的空间频谱与空间滤波实验一、实验目的1、了解透镜的傅里叶变换性质,加深对空间频率、空间频谱和空间滤波等概念的理解。
2、熟悉阿贝成像原理,从信息量的角度理解透镜孔径对分辨率的影响。
3、完成一维空间滤波、二维空间滤波及高通空间滤波。
二、实验原理1873年阿贝(E.Abbe )首先提出显微镜成像原理以及随后的阿贝—波特空间滤波实验,在傅里叶光学早期发展史上做出重要的贡献。
这些实验简单、形象,令人信服,对相干光成像的机理及频谱分析和综合原理做出深刻的解释,同时这种用简单的模板作滤波的方法一直延续至今,在图像处理技术中仍然有广泛的应用价值。
1、二维傅里叶变换和空间频谱在信息光学中常用傅里叶变换来表达和处理光的成像过程。
设在物屏X-Y 平面上光场的复振幅分布为g (x ,y ) ,根据傅里叶变换特性,可以将这样一个空间分布展开成一系列二维基元函数)](2exp[y f x f i y x +π的线性叠加,即⎰⎰+∞∞-+=y x y x y x df df y f x f i f f G y x g )](2exp[),(),(π (1)式中f x 、f y 为x 、y 方向的空间频率,即单位长度内振幅起伏的次数,G (f x ,f y )表示原函数g (x ,y )中相应于空间频率为f x 、f y 的基元函数的权重,亦即各种空间频率的成分占多大的比例,也称为光场(optical field )g (x ,y )的空间频谱。
G (f x 、f y )可由g (x ,y )的傅里叶变换求得⎰⎰+∞∞-+-=dxdy y f x f i y x g f f G y x y x )](2exp[),(),(π (2)g (x ,y )与G (f x ,f y )是一对傅里叶变换式,G (f x ,f y )称为g (x ,y )的傅里叶的变换,g (x ,y )是G (f x ,f y )的逆变换,它们分别描述了光场的空间分布及光场的频率分布,这两种描述是等效的。
傅里叶光学实验傅里叶光学原理的发明最早可以追溯到1893年阿贝(Abbe )为了提高显微镜的分辨本领所做的努力。
他提出一种新的相干成象的原理,以波动光学衍射和干涉的原理来解释显微镜的成像的过程,解决了提高成像质量的理论问题。
1906年波特(Porter )用实验验证了阿贝的理论。
1948年全息术提出,1955年光学传递函数作为像质评价兴起,1960年由于激光器的出现使相干光学的实验得到重新装备,因此从上世纪四十年代起古老的光学进入了“现代光学”的阶段,而现代光学的蓬勃发展阶段是从上世纪六十年代起开始。
由于阿贝理论的启发,人们开始考虑到光学成像系统与电子通讯系统都是用来收集、传递或者处理信息的,因此上世纪三十年代后期起电子信息理论的结果被大量应用于光学系统分析中。
两者一个为时间信号,一个是空间信号,但都具有线性性和不变性,所以数学上都可以用傅立叶变换的方法。
将光学衍射现象和傅立叶变换频谱分析对应起来,进而应用于光学成像系统的分析中,不仅是以新的概念来理解熟知的物理光学现象,而且使近代光学技术得到了许多重大的发展,例如泽尼克相衬显微镜,光学匹配滤波器等等,因此形成了现代光学中一门技术性很强的分支学科—傅里叶光学。
实验原理:我们知道一个复变函数f(x,y)的傅立叶变换为⎰⎰+-=ℑ=dxdy vy ux 2i y x f y x f v u F )](exp[),()},({),(π ( 1 )F (u,v)叫作f(x,y)的变换函数或频谱函数。
它一般也为复变函数,f(x,y)叫做原函数,也可以通过求F(u,v)逆傅立叶变换得到原函数f(x,y), ⎰⎰+=ℑ=-dudv vy ux 2i v u F v u F y x f 1)](exp[),()},({),(π (2)在光学系统中处理的是平面图形,当光波照明图形时从图形反射或透射出来的光波可用空间两维复变函数(简称空间函数)来表示。
在这些情况下一般都可以进行傅里叶变换或广义的傅里叶变换。
逆傅里叶变换公式(2)说明一个空间函数f(x,y)可以表示成无穷多个基元函数exp[i 2π(ux +vy )]的线性叠加,dudv v u F ),(是相应于空间频率u ,v 的权重,F (u ,v )称为f (x ,y )的空间频谱。
为了下面的说明更方便,介绍几个常用的非初等函数和它们的性质:(1)矩形函数:other 0211{)(r 00≤-=-a x x a x x ect (3)它以x 0为中心,宽度为a (a >0),高度为1,两维矩形函数可以表示为两个一维矩形函数的乘(2)sinc 函数: )()()(a x x a x x s i n a x x s i n c 000--=-ππ (4) (3)圆域函数:other 0a y x 1a y x circ 2222≤+=+{)( (5)(4)δ函数:δ函数用来表示物理上的点光源,它是一个广义函数。
它的定义式为:other00y 0,x y x ==∞={),(δ (6) 或⎰⎰=),(),(),(00dxdy y x y x φφδ (7)其中φ(x,y)叫做检验函数,要求为连续、可微函数。
δ函数的性质:a. 筛选性质:设函数f(x,y)在(x 0,y 0)连续,则有),(),(),(0000y x f d x d y y y x x y x f =--⎰⎰δ (8)b. 坐标缩放性质:设a 、b 为实常数,则有),(),(y x ab1by ax δδ= (9) c. 可分离变量性:)()(),(y x y x δδδ= (10)d. 与普通函数乘积的性质:设函数f(x,y)在(x 0,y 0)连续,则有),(),()(),(000000y y x x y x f y y x x y x f --=--δδ, (11)(5)梳状函数:一维梳状函数定义为:∑∞∞=-=n a n x ax comb )()(δ 其中n 为整数。
(12) 两维梳状函数定义:)()()(by comb ax comb by ax,comb = (13) 表1所示为常用的几种函数的傅里叶变换式表1介绍傅里叶变换的基本性质:(1) 线性性质 设)},({),(y x f v u F ℑ=,)},({),(y x g v u G ℑ=,a ,b 为常数,则),(),()},(),({v u G v u aF y x bg y x af +=+ℑ (14)(2)坐标缩放性质 设)},({),(y x f v u F ℑ= a 、b 为不等于0的常数),()},({bv a u F ab 1by ax f =ℑ (15) 这说明物平面(空域)坐标的“伸展”,将导致频域坐标的压缩加上整个频谱幅度上的一个总体倍数的变化。
(3)平移性 设)},({),(y x f v u F ℑ= a 、b 为实常数)](2exp[),()},(f {vb ua i v u F b y a x +-=--ℑπ (16)即,图像在空域中的平移,带来频域中的一个线性相移。
(4)迭次傅里叶变换 ),()}},({{y x f y x f --=ℑℑ (17) 对图像进行连续两次傅里叶变换,则得到其倒立像。
这正是4f 系统的情形。
(5)Parseval 定理(能量守恒定理)设)},({),(y x f v u F ℑ=d u d v v u F d x d y y x f 22⎰⎰⎰⎰=),(),( (18) (6)卷积定理 设)},({),(y x f v u F ℑ=,)},({),(y x g v u G ℑ=,则v)v)G(u,F(u,d d y x g f y x g y x f =--ℑ=⊗ℑ⎰⎰}),(),({)},(),({ηξηξηξ (19)空域中两个函数的卷积(这是线性系统理论中常出现的一种运算)完全等效于一个更简单的运算,(7)相关定理 设)},({),(y x f v u F ℑ=,)},({),(y x g v u G ℑ=,则v)(u,v)G F(u,d d y x g f y x g y x f *=--ℑ=*ℑ⎰⎰}),(),({)},(),({ηξηξηξ (20)在光学成像的过程中如果将一个平面图形放在一个理想的透镜(傅立叶变换透镜)的前焦平面上,在透镜的后焦平面就可以得到它的准确的傅立叶变换,即得到它的频谱函数。
反之如果将一个平面图形的频谱放在一个理想的透镜的前焦平面上,在透镜的后焦平面就可以得到此平面图形(不过图形的坐标要反转)。
从电子学的通讯理论我们知道,如果对信号的频谱进行处理(如滤波处理)再将信号还原就可以改变信号的性质,如去除信号的噪声等等。
因此等效地可以在透镜的后焦平面上放置各种形状和大小的光阑改变图形的频谱,再对此图形用第二个透镜成像就可以对图形进行处理,得到经过处理的图形。
这个过程叫作光学信息处理,在透镜的后焦平面上放置的光阑叫做空间滤波器。
.最典型的空间滤波系统—两个透镜(光学信息处理系统或傅立叶光学变换系统)叫作4f 系统,如图1所示,激光经过扩束准直形成平行光照明物平面(其坐标为x 1,y 1),透过物平面的光的复振幅为物函数f(x 1,y 1),这一光波透镜1到达后焦平面(频谱面)就得到物函数的频谱,其坐标为(u ,v ),再经透镜2 在透镜2的象平面上可以得到与物相等大小完全相似但坐标完全反转的象,设其坐标为(x 2,y 2)。
此时我们将坐标完全反转后可以认为得到原物的完全相同的象。
关于物平面和频谱面的尺寸大小的问题是实验中很重要的。
为了便于问题的讨论,假定物平面和频谱面的坐标单位相同,物函数f(x 1,y 1)的坐标x 1、y 1和频谱函数F(u,v)的坐标u 、v 的关系为fy v f x u λλ11,==, 其中λ为光的波长,f 为透镜的焦距。
以矩孔为例,如果矩孔的长为a ,宽为b ,则频谱面得到的衍射图形即矩孔的频谱为[注1](21)[注1 ]矩孔的数学表达式为)()(by rect a x rect ,根据前面的傅里叶变换的缩放性质和表1可以推得式物平面 透镜1 频谱面 透镜2 像平面图2.4-1 4f 系统bv bv au au A v u F 0ππππsin sin ),(=由此可以计算出频谱面上中央主极大(图2.4-2 右图中央的方斑)的宽度为a f λ,高度为b f λ。
可以知道频谱面尺寸的大小与物平面图形尺寸成反比,与透镜焦距f 成正比,所以为了得到较大尺寸的频谱图用于完成实验的透镜的焦距要求较长。
图2.4-2右图所画的不是物函数的频谱,而是其功率谱。
因为任何光的探测器都只能对光强有反映,所以我们观察到的只是频谱的强度分布即模的平方—功率谱。
对方孔来说其频谱与功率谱的尺寸相同。
空间滤波器由于其特性和功能不同可以进行不同的分类,按其功能可以分为:1.低通滤波:在频谱面上放如图2.4-3(1)所示的光阑,只允许位于频谱面中心及附近的低频分量通过,可以滤掉高频噪音。
2.高通滤波:在频谱面上放如图2.4-3(2)所示的光阑,它阻挡低频分量而让高频分量通过,可以实现图像的衬度反转或边缘增强。
3. 带通滤波:在频谱面上放如图2.4-3(3)所示的光阑,它只允许特定区域的频谱通过,可以去除随机噪音。
4.方向滤波:在频谱面上放如图2.4-3(4)或(5)所示的光阑,它阻挡或允许特定方向上的频谱分量通过,可以突出图像的方向特征。
以上滤波光阑因透光部分是完全透光,不透光部分是将光全部挡掉,所以称作“二元振幅滤波器”。
还有各种其它形式的滤波器,如:“振幅滤波器”、“相位滤波器”和“复数滤波器”等。
5.相幅滤波器:是将位相转变为振幅的滤波器,它的重要应用就是把”位相物体”显现出来,所谓位相物体是指那些只有空间的位相结构而透明度却一样的透明物体。
如生物切片、油膜、热塑等,它们只改变入射光的位相而不影响其振幅。
所以人眼不能直接看到透明体中的位相分布也就是它们的形状和结构,利用相幅转换技术就能使人眼看到透明体的形状和结构,从而扩展了人眼的视觉功能。
显现位相的技术有许多种,这里只介绍纹影法和相衬法。
(1)纹影法:这是一个在空气动力学和燃烧学方面很有用的装置,可以应用于火焰照相和流场显示技术。
它使用的光阑是一个刀口或一个如图4(2)所示的高通滤波器,也可以是个带通滤波器图 3 图2.4-3 各种形式的空间滤波器图2.4-2 矩形透光孔和它的频谱图s=Aexp{i [ϕ (x ,y )]} (22)如果ϕ很小复振幅可以近似表示为:b (x ,y )≅A[1+i ϕ(x ,y )] (23)在刀口平面内,复振幅可以写成b (x ,y )的傅立叶变换。