傅里叶光学和光学信息处理
- 格式:ppt
- 大小:459.00 KB
- 文档页数:44
实验题目:傅里叶光学实验目的:加深对傅里叶光学中的一些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。
通过实验验证阿贝成像理论,理解透镜成像的物理过程,进而掌握光学信息处理的实质,通过阿贝成像原理,也可进一步了解透镜孔径对分辨率的影响。
实验原理:见预实验报告。
实验步骤:1、调节仪器打开激光器,取一张白纸挡在光路上,观察光圈中红光集中在那个位置,调节全反射镜,使红光集中在光圈中心。
然后将一维光栅、透镜放在光具座上,调节仪器竖直位置与水平位置,使得激光正好经过仪器正中央。
2、测透镜焦距取一张白纸家在遮光屏上,移动遮光屏,观察其上的激光,待到出现一排清晰的衍射光点时,该位置到透镜的距离即为透镜的焦距。
3、观察光分别经过一维、二维光栅后在屏上所成像,并计算一维光栅参数。
取下白纸,观察墙上光幕中有何现象。
取下一维光栅,安上二维光栅,观察墙上光幕有何现象。
4、观察一维光栅条纹取下二维光栅,换上一维光栅。
把白纸放回焦点上,并在k=0级衍射点处扎一小孔,使得只让0级衍射光通过,观察墙上光幕中有何现象。
在k=0、1、-1级衍射点处扎一小孔,使得只让0、1、-1级衍射光通过,观察墙上光幕有何现象。
在k=0、1、-1、2、-2级衍射点处扎一小孔,使得只让0、1、-1、2、-2级衍射光通过,观察墙上光幕有何现象。
5、观察二维光栅条纹取下一维光栅,换上二维光栅,将白纸放到焦平面上。
扎透含零级衍射的一列水平方向的衍射点,观察现象。
扎透含零级衍射的一列竖直方向的衍射点,观察现象。
扎透含零级衍射的一列与水平方向成45°角(逆时针方向旋转)的衍射点,观察现象。
扎透含零级衍射的一列与水平方向成135°角的衍射点,观察现象。
6、观察光通过光字板后的成像将小透镜与二维光栅取下,换上光字板与大透镜。
观察墙上光幕中光字中的条纹。
设法将光字中的横条纹去掉。
设法将光字中的纵条纹去掉。
设法将光字中的条纹都去掉。
§2 - 5傅里叶光学 光学信息处理光学与电通讯和电信息理论相互结合,逐渐形成了傅里叶光学。
傅里叶光学的数学基础是傅里叶变换,它的物理基础是光的衍射理论。
一、空间频率和复振幅设一维简谐波以相速度u 沿x 轴正方向传播,0(,)cos ()x t A t k x ξωϕ=-+简谐振动的时间周期性:时间周期T 时间频率ν 时间角频率ω简谐波还具有空间周期性 ?波速u :(单位时间内振动状态的传播距离称为波速,相速) 2u Tλωλνλ===π(2. 40)空间周期性:空间周期:波长λ(表示振动在一个周期T内所传播的距离,两个相邻的振动相位相同的点之间距离。
)空间频率:1/λ空间角频率:波数2π/λ若两个单色波沿其传播方向有不同的空间频率,意味着它们有不同的波长。
时间周期性和空间周期性的联系(对单色光):λ =uT沿空间任意k 方向传播的单色平面波,复振幅i 00()e E A ⋅=k r ri (cos cos cos )0ek x y z A αβγ++=其中α , β 和γ 为传播矢量k 的方位角。
在多数情况下,若不考虑光波随时间的变化,可以只用复振幅表示光波以简化计算。
二、空间频率概念的推广(二维) 通常,要处理一个二维的复振幅分布或光强分布,如分析平面上的衍射花样,这时要推广空间频率。
沿k 方向传播的单色平面波,0z z 平面的复振幅分布为x xyyzzk0i cos i (cos cos 00(,)e ez k x y E x y A γα+=k (2-41)对于沿一定方向传播的平面波,0i cos e z γk =常数,则i (cos cos )0(,)ek x y E x y A αβ+=(2-42) where 0i cos 0ez A A γ=k =复常数so, x, y 平面上各点复振幅的差别 from 不同的(x, y )处有不同的位相差xkzOγαxBx y 平面上的相位分布?K 方向传播的平面波的波面如上图示,0z z =平面与任一波面的交线(虚)上,各点的位相=该波面的位相值;交线族 = 等位相线族,其方程为2(cos cos )x y constπαβλ+=(2-43)故,0z z =平面上复振幅分布的特点:等位相线是一组平行线, 呈周期分布(周期为2π)。
傅里叶光学空间滤波实验实验安全注意事项随着科学技术的不断进步,傅里叶光学空间滤波实验在光学领域中扮演着越来越重要的角色。
傅里叶光学空间滤波实验是利用傅里叶变换原理进行光学信息处理的一种方法,可以对光学信号进行处理和改善,被广泛应用于图像处理、光学通信和光学信息处理等领域。
然而,在进行傅里叶光学空间滤波实验时,我们必须要注意一些实验安全的注意事项,以确保实验顺利进行且不发生意外。
在进行傅里叶光学空间滤波实验时,首先要注意使用实验装置和设备。
实验中需要使用激光器、透镜、衍射光栅等光学器件,这些器件在使用过程中可能会产生高能光线,因此需要注意眼睛的保护,避免直接暴露在光线中。
实验中需要处理激光器和高压电源等设备,这些设备可能存在触电、烫伤等风险,因此在操作时需要格外小心,避免发生意外。
在进行傅里叶光学空间滤波实验时,要注意实验环境的安全。
由于实验中可能会产生激光和高能光线,因此需要在实验室中设置相应的警示标识,并保证实验环境的通风良好,避免光线对实验人员和周围环境造成伤害。
在实验室中还要保持实验区域的整洁,避免杂物和化学品等对实验产生干扰,确保实验的安全进行。
另外,进行傅里叶光学空间滤波实验时,要注意实验操作的安全。
在操作过程中需要遵守操作规程,确保实验设备和器件的正确使用。
特别是在调整激光器功率、调节透镜焦距等操作时,要小心谨慎,避免对自己和他人造成伤害。
在进行实验时要注意实验数据的记录和保存,避免实验数据的丢失和损坏,确保实验结果的准确性和可靠性。
进行傅里叶光学空间滤波实验时,实验者要时刻注意实验安全的重要性,严格遵守实验安全规程,确保实验的顺利进行且不发生意外。
只有在保证实验安全的前提下,我们才能够更好地进行傅里叶光学空间滤波实验,获取准确的实验结果,推动光学领域的发展。
在我看来,实验安全是进行任何实验工作时必须首要考虑的因素。
只有在保证实验安全的前提下,才能够更好地进行科学研究和实验工作,创造更多的科研成果。
光信息专业实验报告:傅里叶光学变换系统一、实验目的和内容1、了解透镜对入射波前的相位调制原理。
2、加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。
3、观察透镜的傅氏变换力图像,观察4f 系统的反傅氏变换的图像,并进行比较。
4、在4f 系统的变换平面插入各种空间滤波器,观察各种试件相应的频谱处理图像。
二、实验基本原理1、透镜的FT 性质及常用函数与图形的关学频谱分析透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。
图1为简化分析,假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。
设原复振幅分布为(,)L U x y 的光通过透镜后,其复振幅分布受到透镜的位相调制,附加了一个位相因子(,)x y ϕ后变为(,)L U x y ': (,)(,)exp[(,)]L L U x y U x y j x y ϕ'= (1)若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。
光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0D -(,)D x y ,透镜折射率为n ,则该点的总的位相差为:00(,)[(,)](,)(1)(,)x y k D D x y knD x y kD k n D x y ϕ=-+=+- (2)(2)中的k =2π/λ,为入射光波波数。
用位相延迟因子(,)t x y 来表示即为:0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (3)由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。
在球面镜傍轴区域,用抛物面近似球面,可以得到球面透镜的厚度函数为:22012111(,)()()2D x y D x y R R =-+- (4) 其中1R 、2R 是构成透镜的两个球面的曲率半径。