傅里叶变换光学简介
- 格式:pdf
- 大小:2.26 MB
- 文档页数:84
傅里叶变换光学系统傅里叶变换光学系统,简称FT光学系统,是一种通过光学方法对物体进行分析的技术。
其基本原理是利用傅里叶变换的思想,将物体在空间域的信息转换为频域的信息,然后通过相同的方式将频域信息还原为空间域信息。
一、傅里叶变换的基本原理傅里叶变换是一种将函数从时域转换到频域的技术。
其基本原理是将一个函数按照不同频率分解成一系列正弦波的和。
具体来说,傅里叶变换可以分为以下几个步骤:1. 对原函数在时间域上进行分段,使其转化为一系列长度为Δt 的小区间。
2. 对每一个小区间的函数值进行离散化处理,生成离散的数据序列。
3. 对离散的数据序列进行傅里叶变换,求出在频域上的频率分量。
4. 通过反傅里叶变换,将在频率域的信息还原为在时间域上的信息。
二、傅里叶变换在光学系统中的应用在光学系统中,傅里叶变换可以将一个物体的透射率函数转换为空间域和频域的关系。
通过加入透镜、像差校正等光学器件,可以实现将频域信息转换为对应的光学信号,进而生成一个光学图像。
这种光学图像可以对物体进行解析,便于对物体形状、大小、结构等信息进行研究。
FT光学系统广泛应用于生物医药、材料科学、光学工程等领域中。
三、傅里叶变换光学系统的优点与不足优点:1. 精度高:通过光学技术,可以获取高精度的物体信息,尤其是对于那些复杂的结构物体。
2. 兼容性好:FT光学系统可以与其他光学测量仪器、成像系统等进行互相配合,丰富了光学分析工具的功能。
3. 速度快:由于光子的速度极快,FT光学系统的成像速度也可以达到很高的水平。
不足:1. 设备成本高:由于FT光学系统需要使用高质量、高精度的光学仪器,因而设备成本较高。
2. 实验难度大:FT光学系统需要经过实验测试,对于初学者来说,实验难度比较大。
3. 约束条件多:FT光学系统对光源、光路、光学器件等条件的约束较多,安装过程比较繁琐。
总之,傅里叶变换光学系统在解析复杂物体、研究物体结构等方面有很大优势,并得到了广泛应用。
光学4f系统的傅里叶变换原理
光学4f系统是一种常见的光学传递系统,由两个透镜组成,分别称为前透镜和后透镜,它们之间的距离为f。
该系统可以实现对输入光场的傅里叶变换。
傅里叶变换原理是指输入光场通过光学4f系统后,可以得到输出光场的傅里叶变换。
傅里叶变换是一种将时域信号转换为频域信号的数学变换方法,可以将一个信号分解成一系列的频率成分。
在光学4f系统中,输入光场首先经过前透镜,前透镜将输入光场进行傅里叶变换,将其分解成一系列的平面波。
这些平面波经过后透镜后,再次叠加在一起,形成输出光场。
输出光场可以通过适当选择前透镜和后透镜的焦距以及它们之间的距离f,来实现对输入光场的傅里叶变换。
具体来说,如果前透镜的焦距为f1,后透镜的焦距为f2,则前透镜和后透镜之间的距离为f=f1+f2。
根据傅里叶变换的性质,输入光场经过前透镜后,可以表示为前透镜的传递函数H1与输入光场的乘积。
同样地,输出光场可以表示为后透镜的传递函数H2与前透镜的传递函数H1与输入光场的乘积。
因此,输出光场可以表示为H2H1与输入光场的乘积。
通过选择合适的传递函数H1和H2,可以实现对输入光场的傅里叶变换。
常见
的选择是使H1和H2为透镜的传递函数,即H1和H2都为复振幅调制函数。
这样,输出光场可以表示为输入光场的傅里叶变换。
总之,光学4f系统的傅里叶变换原理是通过选择适当的透镜传递函数,使得输入光场经过前透镜和后透镜后,可以得到输出光场的傅里叶变换。
这一原理在光学信号处理和图像处理中有广泛的应用。
光学经典理论|傅里叶光学基础2018-02-24 17:00今天的光学经典理论为大家带来的是傅里叶光学基础,傅里叶光学是现代光学的一个分支,将电信理论中使用的傅里叶分析方法移植到光学领域而形成的新学科。
光学人们可以看看!在电信理论中,要研究线性网络怎样收集和传输电信号,一般采用线性理论和傅里叶频谱分析方法。
在光学领域里,光学系统是一个线性系统,也可采用线性理论和傅里叶变换理论,研究光怎样在光学系统中的传播。
两者的区别在于,电信理论处理的是电信号,是时间的一维函数,频率是时间频率,只涉及时间的一维函数的傅里叶变换;在光学领域,处理的是光信号,它是空间的三维函数,不同方向传播的光用空间频率来表征,需用空间的三维函数的傅里叶变换。
包含内容60年代发明了激光器,使人们获得了新的相干光源后,傅里叶光学无论在理论和应用领域均得到了迅速发展。
傅里叶光学运用傅里叶频谱分析方法和线性系统理论对广泛的光学现象作了新的诠释。
其主要内容包括标量衍射理论、透镜成像规律以及用频谱分析方法分析光学系统性质等。
推导演示一个光学信息系统和一个电学信息系统有许多相同之处,它们都是收集信息和传递信息,它们都有共同的数学工具──线性系统理论和傅里叶分析。
从信息论角度,关心的是信息在系统中传递过程;同样,对一个光学系统来讲,物和像的关系,也可以根据标量衍射理论由系统中光场的传播来确定,因此光学系统可以看成一个通信信道。
这样,通信理论中已经成熟的线性系统理论可以用来描述大部分光学系统。
当物体用非相干光照射时,在系统像平面上强度分布与物体上强度分布成线性(正比)关系。
而用来描述电学系统的脉冲响应h(t,τ)概念,即系统对一窄脉冲δ(t)(狄喇克δ函数)的响应,也可以用来描述光学系统,即用光学系统对点光源δ(x,y)的响应(点光源的像)h(x,y;ξ,η)来描述系统的性质,两者的区别仅仅在于电学系统的脉冲响应是时间一维函数,光学系统的脉冲函数是空间二维函数,另外两者都具有位移不变性,前者分布不随时间位移而变,后者分布不随空间位移而变(即等晕条件)。
§8.2 傅里叶(Fourier)变换光学系统光学信息处理的任务是研究以二维图像作为媒介来进行图像的识别、图像的增强与恢复、图像的传输与变换、功率谱分析和全息术中的傅里叶全息存储等。
而担任上述任务的数学运算是傅里叶变换,光学成像透镜就具备这种二维图像的傅里叶变换特性。
当然傅里叶变换运算可通过电子计算机来实现,但由于二维图像的信息容量大,需使用复杂而昂贵的电子计算机,且需一定的计算时间,由光学透镜组成的相干光学处理系统,可简单而迅速地完成二维图像的傅里叶变换运算,因此讨论光学透镜的傅里叶变换特性及其设计问题是非常必要的。
一、光学透镜的傅里叶变换特性由标量衍射理论可知,振幅分布为f(x,y)的物体,其夫琅和费衍射场的振幅分布为式中, (x,y)为物面坐标,(xf,yf)为衍射场坐标。
令因此夫琅和费衍射过程实际上就是一个傅里叶变换过程,衍射场即为频谱面。
若把频谱面再进行一次傅里叶变换,可得令x'=-x,y'=-y,则有f(x',y')=f(x,y)。
因此物函数f(x,y)经二次傅里叶变换后,仍可得到原函数f(x',y'),只不过函数的坐标发生了倒置。
若在第一次变换后的频谱面上插入各种不同用途的空间滤波器或掩膜板来改变输入物体的频谱状态,就可以达到各种光学图像的处理目的。
当傅里叶变换物镜满足某些特定的成像要求时,上述4f系统可获得严格的傅里叶变换关系,这是因为当平行光垂直照射输入物面(x,y)时,在输入面上要发生衍射,不同角度的衍射光经透镜L1后,在后焦面(频谱面)上形成夫琅和费衍射图像。
为了获得清晰而位置正确的夫琅和费衍射图像,也就是说为了获得严格的物面傅里叶频谱,傅里叶变换物镜应满足以下成像要求,即具有相同衍射角的光线经透镜变换后,应聚焦于焦平面上的一点,而不同衍射角的光线经透镜变换后,应聚焦于焦面上的不同点处,形成各级频谱。
对傅里叶变换物镜L来说,其成像关系为,若把其像方焦面作为像面,其物面应位于物方无限远,孔径光阑应位于透镜L的前焦面上,构成像方远心光路。
傅里叶光学
傅里叶光学的原理是根据傅里叶分析的原理,利用光的波动特性,将一个复杂的光波分解成多个简单的光波,然后利用这些简单的光波来描述复杂的光波的特性。
这种分析方法可以用来研究光的传播,衍射,折射,反射和其他光学相关的现象,可以研究光的空间分布,特性,调制,幅度,相位等特性。
傅里叶光学是一种基于傅里叶变换的光学理论,它用来描述光线的行为,其中光线的行为可以用傅里叶变换的形式表示。
它是由法国物理学家和数学家约瑟夫·傅里叶发现的,他在1822年发表了一篇论文,提出了“傅里叶光学”的概念,并且将其用于描述光线的行为。
傅里叶光学的基本原理是,光线可以用一系列的正弦函数来表示,这些正弦函数的频率和振幅可以用傅里叶变换来表示。
换句话说,傅里叶光学可以用来描述光线如何传播,如何反射,如何折射,以及如何在介质中传播,等等。
傅里叶光学的原理被广泛应用于光学,以及其他科学和工程领域。
它可以用来解释和模拟光线在不同环境中的传播特性,以及光线在介质中的反射、衍射和折射等现象。
光傅里叶变换
光傅里叶变换是一种基于傅里叶变换的光学技术,用于分析光信号的频谱信息。
它利用傅里叶变换原理将光信号从时域转换到频域,从而可以在频域中对信号进行分析和处理。
光傅里叶变换基于光的干涉原理。
当一个光波通过光栅或干涉仪等光学元件时,光波会被分散成不同的频率分量。
通过调整光路的长度差异或改变光学元件的参数,可以实现对不同频率分量的选择性处理。
光傅里叶变换可用于光谱分析、滤波、频谱合成等应用。
在光谱分析中,可以通过光傅里叶变换将光信号分解为不同频率的谱线,从而获得样品的光谱信息。
在滤波中,可以通过光傅里叶变换选择性地滤除或增强特定频率的信号。
在频谱合成中,可以通过光傅里叶变换将多个信号的频谱信息叠加起来,得到一个合成的频谱。
光傅里叶变换在光学、光通信、图像处理等领域有广泛的应用。
它可以提供高分辨率的频谱分析能力,同时也具有较快的处理速度和较低的功耗。
因此,光傅里叶变换在大数据处理、光学传输和光学信号处理等方面具有重要的应用潜力。
傅里叶光学变换
傅里叶光学变换是一种将光学信号从时域转换到频域的数学工具。
它通过将光学信号分解为不同的频率成分,可以帮助我们更好地理解和分析光学现象。
傅里叶光学变换基于傅里叶变换的原理,在光学领域广泛应用于光波的传播、衍射和成像等问题。
通过傅里叶光学变换,我们可以把一个光学信号表示为一系列不同频率的正弦波的叠加,这些正弦波的振幅和相位信息可以提供有关原始信号的详细特征。
傅里叶光学变换的数学公式如下:
F(ν) = ∫f(t)e^(-2πiνt)dt
其中,F(ν)表示频率为ν的光学信号的傅里叶变换结果,f(t)表示原始光学信号,e为自然对数的底。
傅里叶光学变换的一个重要应用是光学成像。
通过将光场的复振幅进行傅里叶变换,可以获得物体的光学频谱信息,从而实现对物体的高分辨率成像。
此外,傅里叶光学变换还可以应用于光衍射、光波前传播和信号处理等方面。
通过分析不同频率成分的振幅和相位信息,我们可以了解光场在不同空间位置和时间点的变化规律,从而对光学现象进行更深入的研究。
总之,傅里叶光学变换是光学领域中一种重要的数学工具,它能够帮助我们从频域的角度来理解和分析光学信号的特性和行为,为光学研究和应用提供了有力的支持。
傅里叶变换光学LT22012111(,)()()2D x y D x y R R =-+-(4)其中1R 、2R 是构成透镜的两个球面的曲率半径。
公式(4)对双凹、双凸、或凹凸透镜都成立。
引入焦距f ,其定义为:12111(1)()n f R R=-- (5)代入(3)得: 220(,)exp()exp[()]2k t x y jknD j xy f =-+(6)式(6)即是透镜位相调制的表达式,它表明复振幅(,)LU x y 通过透镜时,透镜各点都发生位相延迟。
从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。
第二项22exp[()]2k j xy f -+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。
而且与透镜的焦距有关。
当考虑透镜孔径后,有:22(,)exp[()](,)2kt x y jx y p x y f=-+(7)其中的(,)p x y 为透镜的光瞳函数,表达式为: 1(,)0p x y ⎧=⎨⎩ 孔径内其 它(8)2、透镜的傅里叶变换性质在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。
衍射图像的强度分布正比于衍射屏的功率谱分布。
一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。
如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。
为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。
图2 透镜的傅里叶变换性质设(,)E x y 、11E(,)x y 、11E (,)x y '、(,)ffE x y 分别表示衍射屏后、透镜输入平面、输出平面以及像方平面出光波场的复振幅分布。