系统辨识基础:模型阶次辨识
- 格式:pdf
- 大小:108.62 KB
- 文档页数:3
1. 模型与系统1)模型:把关于实际系统的本质的部分信息简缩成有用的描述形式。
它用来描述系统的运动规律,是系统的一种客观写照或缩影,是分析、预报、控制系统行为的有力工具。
模型是实体的一种简化描述。
模型保持实体的一部分特征,而将其它特征忽略或者变化。
不同的简化方法得到不同的模型。
2)系统:有些书里也称为过程,按某种相互依赖关系联系在一起的客体的集合。
本身的含义是比较广泛的,可以指某个工程系统、某个生物学系统,也可以指某个经济的或社会的系统。
这里所研究的“对象”是抽象的,重要的是其输入、输出关系。
2. 残差和新息1)新息(输出预报误差):是过程输出预报值与实测值之间的误差。
(P13)过程输出预报值: 输出预报误差: 过程输出量: 2)残差:是滤波估计值和实测值之差。
3. 系统可辨识的条件最小二乘方法满足开环可辨识条件;激励信号是持续激励,阶次至少要(na+nb+1)阶。
可辨识条件:为了辨识动态系统,激励信号u 必须在观测的周期内对系统的动态持续地激励。
满足辨识对激励信号最起码的要求的持续激励信号应具备的条件,称“持续激励条件”。
4. 建立数学模型1)建立方法:①理论分析法:机理法或理论建模,“白箱”问题②测试法:系统辨识,“黑箱”问题③两者结合:“灰箱”理论问题2)基本原则:①目的性-明确建模的目的,如控制、预测等。
因为不同的建模目的牵涉到的建模方法可能不同,它也将决定对模型的类型、精度的要求。
②实在性-模型的物理概念要明确。
③可辨识性-模型的结构要合理,输入信号必须是持续激励的;另外数据要充足。
④节省性-待辨识的模型参数个数要尽可能地少。
以最简单的模型表达所描述的对象特征。
5. 辨识:就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。
1)试验设计:包括输入信号(幅度、频带等)、采样时间、辨识时间(数据长度)、开环或闭环辨识、离线或在线辨识(P19)目的:使采集到的数据序列尽可能多地包含过程特性的内在信息。
系统辨识根底复习资料知识点汇总:1.所谓系统,按通常的意义去理解,就是按某种相互依赖关系联系在一起的客体的集合。
2.所谓系统辨识,利用对未知系统的试验数据或在线运行数据〔输入/输出数据〕以及原理和原则建立系统的〔数学〕模型的科学。
3.系统辨识的步骤:〔1〕先验知识和建模目的的依据;〔2〕实验设计;〔3〕结构辨识;〔4〕参数估量;〔5〕模型适用性检验。
4.系统的数学模型,描述系统输入与输出之间数量关系的数学表达式称为系统的数学模型。
5. 目前最流行的操纵系统辅助工具是Matlab。
6.机理分析和系统辨识相结合建模方法也称为“灰箱问题〞。
7.机理建模这种建模方法也称为“白箱问题〞。
8.频谱覆盖宽、能量均匀分布是白噪声信号的特点。
9.最小二乘法辨识方法不属于系统辨识的经典方法。
10.关于多阶最小二乘法,描述错误的选项是计算简单,计算量小,只用五步根本的最小二乘法可获得较好的结果。
11.渐消记忆法是指对旧数据加上遗忘因子,按指数加权来使得旧数据的作用衰减。
12.脉冲响应数学模型属于非参数型。
13.检验模型的标准是模型的实际效果,检验应从不同的侧面检验其可靠性。
14.与周期测试信号相比,阶跃响应法不能够比拟精确地反映对象的动态特性。
15.闭环系统前向通道的阶次不是可辨识的。
16.使辨识系统可被辨识的X要求是辨识时间内系统的动态必须被输入信号延续鼓励。
17.观测数据内容不属于系统辨识的根本内容。
18.输入数据不属于系统辨识过程中的3大要素。
19.棕箱不属于按提供的实验信息分类的建模方法。
20.数学建模不属于现代操纵论的三大支柱。
21.不属于传递函数辨识的时域方法的是时间图索法。
22.关于递推算法收敛性的结论错误的选项是递推辅助变量法收敛于非真值。
23.设A为n×n矩阵,B为n×m矩阵,C为m×n矩阵,并且A,A+BC和I+CA-1B 都是非奇异矩阵,则以下等式横成立的是A+BC-1=A-1-A-1BI+CA-1B]-1CA-1。
系统辨识复习提纲1.什么是系统?什么是系统辨识?系统泛指由一群有关联的个体组成,根据预先编排好的规则工作,能完成个别元 件不能单独完成的工作的群体。
即一群有相互关联的个体组成的集合称为系统。
系统辩识就是:利用对未知系统的试验数据或在线运行数据(输入/输出数据)以及原理和原则建立系统的(数学)模型的科学。
2.什么是宽平稳随机过程,其遍历定理容是什么?答:在数学中,平稳随机过程或者严平稳随机过程,又称狭义平稳过程,是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程:即随机过程的统计特性不随时间的推移而变化。
这样,数学期望和方差这些参数也不随时间和位置变化。
如果平稳随机过程()t x de 各集和平均值等于相对应的时间平均值x =μx ,()()τ+t x t x =Rx ()τ,式中x 伪随机过程()t x 的时间平均值;x μ为与以为 概率密度有关的数字特征量集合均值;Rx ()τ为自相关函数。
则称()t x 是各态遍历的平稳随机过程。
3.简述噪声模型及其分类。
P130噪声模型:)()()(111---=z C z D z H分类:1) 自回归模型,简称AR 模型,其模型结构为 )()()(1k v k e z C =- 2) 平均滑动模型,简称MA 模型,其模型结构为)()()(1k v z D k e -=3)自回归平均滑动模型,简称ARMA 模型,其模型结构为))()()()(11k v z D k e z C --=4.白噪声与有色噪声的区别是什么?答:辨识所用的数据通常含有噪声。
如果这种噪声相关性较弱或者强度很小,则可近似将其视为白噪声。
白噪声过程是一种最简单的随机过程。
严格地说,它是一种均值为零、谱密度为非零常数的平稳随机过程,或者说它是由一系列不相关的随机变量组成的一种理想化随机过程。
白噪声过程没有“记忆性”,也就是说t 时刻的数值与t 时刻以前的过去值无关,也不影响t 时刻以后的将来值。
系统辨识大作业
一.设SlSO系统差分方程为
y(k)=—α1y(k-1)-a2y(k-2)+bλu(k-1)+b2u(k-2)+ξ{k)
辨识参数向量为θ=[q a2b l b2]r,输入输出数据详见数据文件UyLtXt—uy3.txtoξ(k)为噪声方差各异的白噪声或有色噪声。
试求解:
1)用n元一次方程解析法,再求其平均值方法估计。
2)用最小二乘及递推最小二乘法估计。
;
3)用辅助变量法及其递推算法估计
4)用广义最小二乘法及其递推算法估计
5)用夏氏偏差修正法、夏氏改良法及其递推算法估计
6)用增广矩阵法估计
7)分析噪声父攵)特性;
二.用极大似然法估计6。
三.以上题的结果为例,进行:
1.分析比较各种方法估计的精度;
2.分析其计算量;
3.分析噪声方差的影响;
4.比较白噪声和有色噪声对辨识的影响。
四.系统模型阶次的辨识:
1.用三种方法确定系统的阶次并辨识;
2.分析噪声对定阶的影响;
3.比较所用三种方法的优劣及有效性;
五.给出由正弦输入求取系统开环频率响应特性曲线的辨识方法。
六.提出一种自己创造的辨识新方法,并用所给数据进行辨识验证。
注:闭卷考试时提交大作业报告。
系统辨识《系统辨识》课程综述及其⼯程应⽤案例⼀、系统辨识课程综述1、定义系统辨识是在已知或测得系统输⼊和输出数据的基础上,从⼀组给定的模型类中,确定⼀个与所测系统等价的模型。
系统辨识要素为:数据:指系统过程的输⼊数据和输出数据,它是辨识的基础。
模型类:指各种已知的系统过程模型集合,它是辨识时寻找模型的范围。
等价准则:指系统⾏为相似性、系统效⽤等同性的识别标准,它是辨识优化的⽬标。
辨识的实质就是按某种准则,从⼀组已知模型类中选择⼀个模型,使之能最好地拟合实际过程的动态特性。
观测数据含有噪声,因此辨识建模实际上是⼀种实验统计的⽅法,所获得的模型只是与实际过程的外特性等价的⼀种近似描述。
从某种意义上来说,不同学科的发展过程就是建⽴他的数学模型的过程。
辨识问题可以归结为⽤⼀个模型来表⽰可观系统(或将要改造的系统)本质特征的⼀种演算,并⽤这个模型吧对客观系统的理解表⽰成有⽤的形式。
当然可以刻有另外的描述,辨识有三个要素:数据,模型类和准则。
辨识就是按照⼀个准则在⼀组模型类中选择⼀个与数据拟合得最好的模型。
总⽽⾔之,辨识的实质就是从⼀组模型类中选择⼀个模型,按照某种准则,使之能最好地拟合所关⼼的实际过程的静态或动态特性。
⽐较典型的⼏个定义为:(1)L.A.Zadeh 定义:辨识就是在输⼊和输出数据的基础上,从⼀组给定的模型类中,确定⼀个与所测系统等价的模型;(2)P.Eykhoff 定义:辨识问题可以归结为⽤⼀个模型来表⽰客观系统(或将要构造的系统)本质特征的⼀种演算,并⽤这个模型把客观系统的理解表⽰成有⽤的形式;(3)L.Ljung 定义:辨识有三个要素,即数据、模型类和准则。
辨识就是按照⼀个准则在⼀组模型类中选择⼀个与数据拟合得最好的模型。
2、系统辨识基本原理系统辨识算法根据过程提供的测量信息,按照最优准则,估计模型未知参数,如图1所⽰。
通常采⽤逐步逼近获取模型参数θ的估值'θ,根据k -1时刻的估计参数,计算出k 时刻的预测值、预测误差。