系统辨识的基本概念
- 格式:ppt
- 大小:2.59 MB
- 文档页数:34
1.系统辨识的概念系统辨识是采用系统运行或试验过程中猎取的系统输入-输出数据求得系统数学模型(传递函数)的方法和技术。
2.过程的概念通常泛指具有时间或空间上的跨度的对象。
详细的如:工程系统、生物系统或社会经济系统都可以称为过程3.模型的概念指过程运动规律的本质描述。
4.模型依据描述形式分类(1)直觉模型指过程的特性以非解析的形式直接存储在人脑中靠人的直觉掌握过程地进行。
(2)物理模型实际过程的一种物理模拟。
(3)图表模型以图形式或表格的形式来表现过程的特性,也成为非参数模型。
(4)数学模型用数学结构的形式来反映实际过程的行为特点。
5.依据模型的特性,数学模型可以分为线性和非线性模型系统线性与关于参数空间线性本质线性与本质非线性动态和静态模型确定性和随机性模型宏观(积分方程)和微观(微分方程)模型等6.建立过程数学模型的两种主要方法(1)机理分析法通过分析过程的运动规律、应用一些己知的规律、定理和与原理建立过程的数学模型,这种方法也称为理论建模(2)测试法——辨识方法采用输入输出数据所供应的信息来建立过程的数学模型白箱一一理论建模黑箱一一辨识建模灰箱一一理论建模与辨识建模结合7.辨识的定义辨识有三个要素-数据、模型类和准则,辨识就是依据一个准则在一组模型类中选择一个与数据拟合得最好的模型8 .系统辨识的步骤(1)依据辨识目的,采用先验学问,初步确立模型结构(2)采集数据(3)进行模型参数和结构辨识(4)验证获得最终模型9 .随机过程无穷多个随机函数的总体称为随机过程。
两层含义:随机过程ξ⑴在任一时刻都是随机变量;随机过程ξ⑴是大量样本函数的集合。
10 .各种随机过程计算公式二维分布函数:F2(Xl y r2;t1,t2)=P{(tι)≤Λι,ξ(t2)≤X2}二维概率密度函数:C,..、 ∂2F 2(X v X 2U l J 2)f 2{X v X 2'y t v t 2)=--I ,2∂x i -OX 2一维和n 维类推数学期望:反映了随机过程取值的集中位置E{a)}=Z 马P(巧)=α(E)(离散)E{ξ(t)}=「xf(x)dx≈a(t)(连续) J-CO方差:反映了随机过程的集中程度σ2=D[ξ(t)]=E [[ξ(t)-a(t^)=£[ξ(t)-a(t)ff(x)dx自协方差:用来衡量任意两个时刻上获得的随机变量的统计相关特性即出)=£{/&)")]4(小一岫)]}=「L[%一ag )][x 2-a (h )]启为,WM 冉)四dx ι自相关函数:R(M 2*…2)]x 2∕2(x l ,x 2i∕1√2)dx ∣dX2二者关系:B(G J 2)=R(A √2)-F[⅞(η)]∙E[ξ(t 2)]互协方差函数:«1,G)=EHe«1)-%«1)][〃«2)一%«2)])相互关函数:%(22)=顼其幻帆幻]特殊的:RS(T)=O表示两个随机过程是不相关(正交的随机过程)11.平稳随机过程对于任意的正整数n和任意实数5t2,…,tn,T,随机过程g⑴的n维概率密度函数满意)∕f(X1,X2,∙∙∙,Xπ7l√2,∙∙∙√π)=Λ(X1,X2,∙∙∙^√r i+Γ^2+Γ‹∙∙^,J+R则称ξ⑴为平稳随机过程(严平稳随机过程或狭义平稳随机过程)若随机过程g⑴的数学期望和方差与时间无关,自相关函数仅是T的函数,则称它为宽平稳随机过程或广义平稳随机过程12.各态历经性随机过程中的任一实现都经受了随机过程的全部可能状态。
离散控制系统的系统辨识技术离散控制系统的系统辨识技术是在离散时间下对系统进行建模和参数估计的一种方法。
通过系统辨识技术,我们可以获取到系统的数学模型和参数,从而实现对系统的控制。
本文将介绍离散控制系统的系统辨识技术及其应用。
一、系统辨识的基本概念系统辨识是指通过实验和数据分析,推导出系统的数学模型和参数的过程。
在离散控制系统中,由于系统的输入和输出变量是按照离散时间采样得到的,因此需要采用特定的辨识方法进行处理。
常见的离散控制系统的系统辨识方法包括:参数辨识、经验模型辨识和神经网络辨识等。
参数辨识方法通过对系统的输入-输出数据进行数学建模和参数估计,得到系统的差分方程或状态空间模型。
经验模型辨识方法则利用系统的输入-输出数据建立经验模型,这种方法不需要对系统做具体的建模,适用于复杂系统。
而神经网络辨识方法是通过训练神经网络模型来拟合系统的输入-输出数据,从而得到系统的模型和参数。
二、离散控制系统的参数辨识方法参数辨识是离散控制系统中常用的系统辨识方法之一。
参数辨识方法假设系统的数学模型已知,但其中的参数未知或者不准确,通过实验数据对这些参数进行估计。
在实际应用中,参数辨识方法可以分为两类:基于频域的辨识方法和基于时域的辨识方法。
基于频域的辨识方法主要利用系统的频率响应函数来识别参数,例如最小二乘法、极大似然法等。
而基于时域的辨识方法则是利用系统的时序数据来进行参数估计,例如递推最小二乘法、扩展卡尔曼滤波法等。
三、离散控制系统的经验模型辨识方法经验模型辨识方法是一种不需要假设系统的具体数学模型的系统辨识方法。
该方法通过将系统的输入-输出数据进行数据处理和分析,从中提取系统的特征,建立经验模型。
常见的经验模型辨识方法包括:自回归移动平均模型(ARMA)、自回归滑动平均模型(ARIMA)和动态线性模型(DLM)等。
这些方法都是通过对系统的输入-输出数据进行统计分析和数据建模,从中获得系统的经验模型参数。
如何使用MATLAB进行系统辨识与模型建模引言:近年来,随着科学技术的飞速发展,各行各业都在努力寻求更高效、更智能的解决方案。
系统辨识与模型建模作为一种重要方法和工具,被广泛应用于控制系统、信号处理、机器学习等领域。
在这些领域中,MATLAB作为一款功能强大的数值计算软件,为我们提供了丰富的工具和函数,可用于进行系统辨识与模型建模的分析和实现。
本文将详细介绍如何使用MATLAB进行系统辨识与模型建模,并探讨其在实际应用中的意义和局限性。
一、系统辨识的基本原理1.1 系统辨识的概念及意义系统辨识是指通过对已有数据的分析和处理,建立描述该系统行为的数学模型的过程。
在实际应用中,系统辨识可以帮助我们了解系统的结构和特性,预测系统的行为,并为系统控制、优化提供依据。
1.2 系统辨识的方法系统辨识的方法主要包括参数辨识和结构辨识两种。
参数辨识是指通过拟合已知数据,确定数学模型中的参数值的过程。
常用的参数辨识方法有最小二乘法、极大似然估计法等。
结构辨识是指通过选择适当的模型结构和参数化形式,使用已知数据确定模型结构的过程。
常用的结构辨识方法有ARX模型、ARMA模型等。
二、MATLAB在系统辨识中的应用2.1 数据准备与预处理在进行系统辨识之前,我们首先需要准备好相关的数据。
数据的质量和数量对系统辨识的结果有着重要的影响,因此在数据准备阶段应尽量确保数据的准确性和完整性。
MATLAB提供了丰富的数据处理和分析函数,可用于数据预处理、数据清洗、数据归一化等操作,以提高数据的质量和可用性。
2.2 参数辨识的实现参数辨识是系统辨识的重要步骤之一,其主要目标是通过适当的数学模型拟合已知数据,确定模型中的参数值。
在MATLAB中,我们可以使用curve fitting工具箱中的函数,如fit、cftool等,来进行参数辨识的实现。
同时,MATLAB还提供了最小二乘法等常用的参数辨识算法,方便我们根据实际需求进行选择和应用。
系统辨识方法及其在控制系统中的应用系统辨识是指通过对系统的输入输出信号进行分析和处理,推导出系统的数学模型或者参数。
系统辨识方法在控制系统中有着广泛的应用,能够帮助工程师们设计出更加稳定有效的控制系统。
本文将介绍系统辨识的基本概念、常用的系统辨识方法以及其在控制系统中的具体应用。
一、系统辨识的基本概念系统辨识是研究系统行为、结构以及性能的过程,能够将实际系统的行为模型化为数学模型。
系统辨识的基本思想是通过对系统的输入输出信号的采集和分析,利用数学方法建立系统的数学模型。
这个数学模型可以是线性的或者非线性的,通过对系统的辨识可获得系统的状态空间方程、传递函数或者差分方程等。
二、常用的系统辨识方法1. 基于频率域的辨识方法基于频率域的辨识方法采用了傅里叶变换和频谱分析的原理,将时域的输入输出信号转化到频域中进行分析。
其中常用的方法有频率响应函数法、相位度量法等。
这些方法适用于线性时不变系统的辨识。
2. 基于时域的辨识方法基于时域的辨识方法主要通过对系统的输入输出信号进行采样,然后应用数学统计方法进行辨识。
其中常用的方法有最小二乘法、经验模态分解方法等。
这些方法适用于线性时变系统或者非线性系统的辨识。
3. 基于模态分析的辨识方法基于模态分析的辨识方法使用信号的模态函数进行分析,通过将系统的动力学特性分解为若干个基本模态,得到系统的数学模型。
这些方法适用于非线性系统或者复杂的多变量系统的辨识。
三、系统辨识在控制系统中的应用1. 控制系统设计系统辨识可以帮助工程师们建立系统的数学模型,从而可以进行系统的分析和设计。
通过对系统辨识得到的模型进行控制器的设计和仿真,优化系统的性能和稳定性。
2. 状态估计系统辨识可以根据系统的输入输出信号,估计出系统的当前状态。
这对于某些无法直接测量或者难以获取的状态变量是非常有用的,可以提高控制系统的精度和性能。
3. 故障诊断与监测系统辨识可以通过对系统的输入输出信号进行分析,检测和诊断系统的故障。
使用MATLAB进行系统辨识的步骤与技巧引言:近年来,随着科学技术的不断进步和社会的快速发展,各行各业对于系统辨识的需求越来越迫切。
系统辨识是指在实际系统工作的基础上,通过对系统进行观测和试验,利用数学模型和计算机技术,对系统进行参数估计和结构辨识的过程。
而MATLAB作为一款重要的科学计算软件,为系统辨识提供了强有力的支持。
本文将详细介绍使用MATLAB进行系统辨识的步骤与技巧。
一、系统辨识的基本概念在使用MATLAB进行系统辨识之前,首先需要了解系统辨识的基本概念。
系统辨识主要涉及到两个方面的内容:参数估计和结构辨识。
参数估计是指通过对系统进行实验观测,利用数学方法对系统的参数进行估计;而结构辨识则是指通过试验数据和专业知识,确定系统的结构。
系统辨识的目的是建立一个能够准确描述实际系统行为的数学模型。
二、MATLAB中的系统辨识工具在使用MATLAB进行系统辨识时,我们可以使用其内置的系统辨识工具箱。
该工具箱包含了一系列强大的函数和算法,可以实现系统辨识中的参数估计、模型建立和分析等功能。
通过这些工具,我们可以高效、准确地进行系统辨识。
三、系统辨识的步骤1. 数据采集与预处理在进行系统辨识之前,首先需要采集系统的试验数据。
这些数据可以通过合适的传感器进行观测和记录。
为了获得高质量的数据,我们需要注意选择合适的采样频率和采样时长,并对数据进行预处理,去除噪声和异常值。
2. 建立初始模型在参数估计之前,需要建立一个初始模型,用于参考和优化。
这个初始模型可以基于已有的专业知识或经验,也可以通过MATLAB提供的模型库进行选择。
初始模型的建立可以提高辨识的准确度和效率。
3. 参数估计参数估计是系统辨识的核心过程,包括了参数选择、参数估计和不确定度分析等步骤。
在MATLAB中,我们可以使用各种参数估计方法,如最小二乘法、极大似然估计法等。
通过这些方法,我们可以获得最优的参数估计结果,并对估计结果的可靠性进行评估。