系统辨识基础--经典辨识方法
- 格式:ppt
- 大小:405.00 KB
- 文档页数:10
系统辨识方学习总结一.系统辨识的定义关于系统辨识的定义,Zadeh是这样提出的:“系统辨识就是在输入和输出数据观测的基础上,在指定的一组模型类中确定一个与所测系统等价的模型”。
L.Ljung也给“辨识即是按规定准则在一类模型中选择一个与数据拟合得最好的模型。
出了一个定义:二.系统描述的数学模型按照系统分析的定义,数学模型可以分为时间域和频率域两种。
经典控制理论中微分方程和现代控制方法中的状态空间方程都是属于时域的范畴,离散模型中的差分方程和离散状态空间方程也如此。
一般在经典控制论中采用频域传递函数建模,而在现代控制论中则采用时域状态空间方程建模。
三.系统辨识的步骤与内容(1)先验知识与明确辨识目的这一步为执行辨识任务提供尽可能多的信息。
首先从各个方面尽量的了解待辨识的系统,例如系统飞工作过程,运行条件,噪声的强弱及其性质,支配系统行为的机理等。
对辨识目的的了解,常能提供模型类型、模型精度和辨识方法的约束。
(2)试验设计试验设计包括扰动信号的选择,采样方法和间隔的决定,采样区段(采样数据长度的设计)以及辨识方式(离线、在线及开环、闭环等的考虑)等。
主要涉及以下两个问题,扰动信号的选择和采样方法和采样间隔(3)模型结构的确定模型类型和结构的选定是决定建立数学模型质量的关键性的一步,与建模的目的,对所辨识系统的眼前知识的掌握程度密切相关。
为了讨论模型和类型和结构的选择,引入模型集合的概念,利用它来代替被识系统的所有可能的模型称为模型群。
所谓模型结构的选定,就是在指定的一类模型中,选择出具有一定结构参数的模型M。
在单输入单输出系统的情况下,系统模型结构就只是模型的阶次。
当具有一定阶次的模型的所有参数都确定时,就得到特定的系统模型M,这就是所需要的数学模型。
(4)模型参数的估计参数模型的类型和结构选定以后,下一步是对模型中的未知参数进行估计,这个阶段就称为模型参数估计。
(5)模型的验证一个系统的模型被识别出来以后,是否可以接受和利用,它在多大程度上反映出被识别系统的特性,这是必须经过验证的。
经典辨识方法报告1. 面积法辨识原理分子多项式为1的系统 11)(111++++=--s a sa s a s G n n nn Λ……………………………………………()由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。
大多数自衡的工业过程对象的y(t)可以用下式描述来近似1)()()()(a 111=++++--t y dtt dy a dt t y d a dt t y d n n n nK ……………………………() 面积法原则上可以求出n 为任意阶的各系数。
以n=3为例,注意到1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dtt y dt t y dt t y …………………………() 将式()的y(t)项移至右边,在[0,t]上积分,得⎰-=++t dt t y t y a dtt dy a dt t y d a 01223)](1[)()()(…………………………………() 定义⎰-=tdt t y t F 01)](1[)(……………………………………………………………()则由式()给出的条件可知,在t →∞⎰∞-=01)](1[a dt t y ……………………………………………………………()将式a 1y(t)移到等式右边,定义 )()]()([)()(a 201123t F dt t y a t F t y a dtt dy t =-=+⎰…………………………………()利用初始条件()当t →∞时)(a 22∞=F …………………………………………………………………… ()同理有a 3=F 3(∞)以此类推,若n ≥2,有a n =F n (∞)分子、分母分别为m 阶和n 阶多项式的系统当传递函数的形式如下所示时111111)()(11)(u h K m n s a s a s a s b s b s b K s G n n n n m m m m ∞=≥++++++++=----ΛΛ…………………………………定义∑∞=----+=++++++++==1111111111)()(1)(i ii m m m m n n nn s c s b s b s b s a s a s a s P s P Ks G ΛΛ………………………………由于⎰∞--=-0**)](1[)](1[dte t h t h L st …………………………………………则)](1[*t h -的Laplace 变换为: ∑∑∞=∞=-+=-=-111*1)(11)](1[i iii i i s C sC s sP s t h L ……………………………………定义一阶面积1A 为:11110011lim )](*1[lim )](*1[c sC sC t h L dt t h A i ii i i i s s =+=-=-=∑∑⎰∞=∞=-→∞→………令 )1(1)]([1*1s c s t h L +=……………………………………………………………定义二阶面积为:2122**0012)1)(1()]()([limc s c s c sc dtd h h A i i i i i i is t=++=-=∑∑⎰⎰∞=∞=-→∞τττ…同理,令 )...1(1)]([11221*1---++++=i i i s c s c s c s t h L ……………………………………定义i 阶面积为i i c A =。
系统辨识作业一学院信息科学与工程学院专业控制科学与工程班级控制二班XX学号2021 年 11 月系统辨识所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。
辨识的内容主要包括四个方面:①实验设计;②模型构造辨识;③模型参数辨识;④模型检验。
辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型构造;采集数据;然后进展模型参数和构造辨识;最终验证获得的最终模型。
根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参数模型辨识方法,另一类是参数模型辨识方法。
其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是非参数模型。
在假定过程是线性的前提下,不必事先确定模型的具体构造,广泛适用于一些复杂的过程。
经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉冲响应法。
1.阶跃响应法阶跃响应法是一种常用非参数模型辨识方法。
常用的方法有近似法、半对数法、切线法、两点法和面积法等。
本次作业采用面积法求传递函数。
1.1面积法①当系统的传递函数无零点时,即系统传递函数如下:G(S) = a a a a+a a−1a a1−1+⋯+a1a+1(1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K后,要得到无因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述:a a a(a) a−1 (a)a a aa a a aa(1-2) 面积法原那么上可以求出n为任意阶的个系数。
以n为3为例。
有:a3a(a) a2a(a) aa(a){ aa|a→∞ =aa|a→∞ = aa|a→∞ = 0a(a)|a→∞ = 1将式〔1〕中的y(t)移至右边,在[0,t]上积分,得a2a(a)a3 aa aa (1-4) 定义:a1(a) = ∫0a[1 − a(a)]aa (1-5) 由式〔1-3〕条件可知,当t→∞时,a aa (1-6)同理,定义a2aa (1-7) 由式〔1-,3〕条件可知,当t→∞时,a aa (1-8)因此,可得a a(a) = ∫0a[a a−1(a) − a a−1a(a)] dt (1-9)a a= a a(∞) (1-10)②当系统的传递函数存在零点时,传递函数如下:G〔s〕=kb s mmn +ba s mn-1-1s mn-1-1 ++LL ++a sbs1+1+1,〔n m〕〔1-11〕1a s n +其中,K h= ( )/ U0定义1G(s)=KP(s)其中,P(s) = b sa s n mn ++ba s mn-1-1s mn-1-1++LL ++a sbs11 +1+1 = +1 i=1 C s i i〔1-12〕m根据[1−h*(t)]的Laplace变换,求出一阶面积A1,确定L[h〔*1 t ]〕,并定义二阶面积A2 ,以此类推,得到i 阶面积A i 。
系统辨识基础第 1 页第四讲系统辨识基础一、自校正控制与系统辨识1、自校正控制自校正控制是一类重要的自适应控制方案。
自校正的概念最早是由Kalman 在1958年首先提出的,主要用于信号去噪。
而自校正控制是由瑞典学者阿斯特罗姆(K.J.Astrom )和威特马克(B.Wittenmark )在1973年首次提出的,并在工业上得到了广泛的应用。
在自校正控制系统中,被控对象的参数被在线地辨识,然后经过控制器的在线设计过程,对控制器参数进行在线调整,使其始终能适应被控对象模型的变化。
必须注意的是:自校正调节过程是一个迭代优化的过程,通过边辨识、边综合,使得控制器参数能够逐步趋向于最优值。
自校正控制的实现需要满足以下假定:● 被控对象的模型时变速度缓慢● 被控对象可辨识● 由控制器和被控对象构成的系统是稳定的因此,可认为在自校正调节过程中,被控对象的模型是不变的,在此条件下,自校正控制的过程为:(1)在t 时刻根据u(t)和y(t)估计被控对象参数?()t θ;(2)根据?()t θ设计控制器参数?()ct θ;(3)由?()ct θ和r(t +1),可计算出t +1时刻的控制量u (t +1);(4)根据t +1时刻的u (t +1)和y (t +1)再次估计被控对象参数?(1)t θ+;(5)返回步骤2,继续进行递推,直至被控对象参数估计值?()t θ收敛到其真值θ。
第 2 页2、系统辨识由自校正控制的原理可知,系统辨识是自校正控制的基础。
系统辨识是根据一个系统的输入/输出数据建立系统最优数学模型的理论和方法,它不能确保获得系统“真实”的数学模型,但可以在输入/输出关系,也即系统动态响应的意义上获得一个与系统等价的最优的数学模型,而“最优”需要有确定的准则来评判。
系统辨识的内容可以划分为以下三个层次:层次一:模型结构的选择层次二:系统阶次的确定层次三:系统参数的估计由于系统的输入/输出信息都只能依靠测量技术采集,而采集到的数据总是包含各种干扰因素的影响,所以系统辨识是一个“不确定”的过程,具有随机性特征,只能用统计方法来进行研究。
系统辨识理论及应用引言系统辨识是通过对已知输入和输出进行处理,从而识别出系统的数学模型并进行建模的过程。
在现代科学和工程应用中,系统辨识技术被广泛应用于控制系统设计、信号处理、预测和模型识别等领域中。
本文将介绍系统辨识的理论基础、常用方法以及在实际应用中的案例分析,以便读者能够更好地了解系统辨识技术的原理和应用。
系统辨识的理论基础系统辨识的定义系统辨识是一种通过对系统的输入和输出数据进行处理,来推导出系统的数学模型的方法。
系统辨识可以用来描述和预测系统的行为,从而实现对系统的控制和优化。
系统辨识的基本原理系统辨识建模的基本思想是将输入和输出之间的关系表示为一个数学模型。
这个模型可以是线性模型、非线性模型、时变模型等。
在系统辨识中,常用的数学模型包括差分方程模型、状态空间模型、传递函数模型等。
系统辨识的基本原理是通过收集系统的输入和输出数据,然后利用数学方法来推导出系统的数学模型。
这个过程可以看作是一个参数优化的过程,通过不断调整模型参数,使得模型的输出与实际系统的输出尽可能接近。
系统辨识的常用方法系统辨识的常用方法包括参数估计方法、频域分析方法和结构辨识方法。
参数估计方法是最常用的系统辨识方法之一,它通过最小化模型的预测误差来估计模型参数。
常用的参数估计方法包括最小二乘法、最大似然估计法、最小二乘法等。
频域分析方法是基于系统的频率响应特性进行辨识的方法。
常用的频域分析方法包括递归最小二乘法、频域辨识方法等。
结构辨识方法是用来确定系统的结构的方法。
结构辨识方法可以分为模型选择方法和模型结构确定方法。
常用的结构辨识方法包括正则化算法、信息准则准则方法等。
系统辨识的应用控制系统设计系统辨识技术在控制系统设计中起着重要的作用。
通过对系统辨识建模,可以对系统进行建模和优化。
控制系统设计中的系统辨识可以用来预测系统的响应、设计合适的控制器以及优化控制算法。
信号处理系统辨识技术在信号处理中也有广泛的应用。
通过对信号进行系统辨识建模,可以分析信号的特性、提取信号中的有用信息以及去除信号中的干扰等。
.系统辨识作业一学院信息科学与工程学院专业控制科学与工程班级控制二班姓名学号2018 年 11 月系统辨识所谓辨识就是通过测取研究对象在认为输入作用的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。
辨识的内容主要包括四个方面:①实验设计;②模型结构辨识;③模型参数辨识;④模型检验。
辨识的一般步骤:根据辨识目的,利用先验知识,初步确定模型结构;采集数据;然后进行模型参数和结构辨识;最终验证获得的最终模型。
根据辨识方法所涉及的模型形式来说,辨识方法可以分为两类:一类是非参数模型辨识方法,另一类是参数模型辨识方法。
其中,非参数模型辨识方法又称为经典的辨识方法,它主要获得的是模型是非参数模型。
在假定过程是线性的前提下,不必事先确定模型的具体结构,广泛适用于一些复杂的过程。
经典辨识方法有很多,其中包括阶跃响应法、脉冲响应法、相关分析法和普分析法等等,本次实验所采用的辨识方法为阶跃响应法和脉冲响应法。
1.阶跃响应法阶跃响应法是一种常用非参数模型辨识方法。
常用的方法有近似法、半对数法、切线法、两点法和面积法等。
本次作业采用面积法求传递函数。
1.1面积法①当系统的传递函数无零点时,即系统传递函数如下:G(S) = a a a a+a a−1a a1−1+⋯+a1a+1(1-1) 系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K后,要得到无因次阶跃响应y(t)(设τ=0),其中y(t)用下式描述:a a a(a)a−1(a)a a aa a a aa (1-2) 面积法原则上可以求出n为任意阶的个系数。
以n为3为例。
有:a3a(a) a2a(a) aa(a){aa|a→∞ = aa|a→∞ = aa|a→∞ = 0a(a)|a→∞ = 1将式(1)中的y(t)移至右边,在[0,t]上积分,得a2a(a)a3 aa aa (1-4) 定义:a1(a) = ∫0a[1 − a(a)]aa (1-5) 由式(1-3)条件可知,当t→∞时,a aa (1-6)同理,定义a2aa (1-7)由式(1-,3)条件可知,当t→∞时,a aa (1-8)因此,可得a a(a) = ∫0a[a a−1(a) − a a−1a(a)] dt (1-9)a a= a a(∞) (1-10)②当系统的传递函数存在零点时,传递函数如下:=kG(s)b s mmn +ba s mn-1-1s mn-1-1 ++LL ++a sbs1+1+1,(n m)(1-11)1a s n +其中,K h= ( ) / U0定义1G(s)=KP(s)其中,P(s) = b sa s n mn ++ba s mn-1-1s mn-1-1++LL ++a sbs11 +1+1 = +1 i=1 C s i i(1-12)m根据[1−h*(t)]的Laplace变换,求出一阶面积A1,确定L[h(*1 t ]),并定义二阶面积A2 ,以此类推,得到i 阶面积A i 。
传统系统辨识算法1. 引言迄今为止,已经有许多不同的辨识方法。
这些辨识方法就其所涉及的模型的形式来说可以分为两类。
一类是非参数模型的辨识方法,一类是参数模型的辨识方法。
非参数模型的辨识方法(亦称经典的辨识放法)获得的模型是非参数模型。
它在假定过程是线性的前提下,不必事先确定模型的具体结构,因而这类方法可适用于任意复杂的过程,工程上至今仍经常采用。
参数模型的辨识方法(亦称现代的辨识方法)必须假定一种模型结构,通过极小化模型与过程之间的误差准则函数来确定模型的参数。
如果模型的结构无法实现确定,则必须利用结构辨识方法先确定模型的结构参数(比如阶次、纯延迟等),再进一步确定模型参数。
参数模型的辨识方法又可以分为:最小二乘法辨识、梯度校正法辨识以及极大似然法辨识。
根据计算机与过程之间的不同联接方式,辨识又可以分为离线辨识和在线辨识。
离线辨识首先将采集到的数据储存在磁盘或磁带中,然后将数据成批输入计算机进行辨识计算。
这种辨识方式多采用成批处理的算法,或称一次完成算法,其缺点是占用内存较大。
在线辨识通常要在正常运行工况下进行,它一般采用实际处理算法,即每采样一组数据就进行一次辨识计算。
这种辨识方式占用内存量比较小;尤其对时变过程的辨识或自适应控制问题来说,它比离线辨识方式具有更多的优势。
本次作业使用经典的辨识中的一些方法对系统进行辨识。
在经典的控制理论中,线性过程的动态特性通常用:传递函数G(s)频率响应G(jw)脉冲响应g(t)阶跃响应h(t)来表示。
后三种为非参数模型,其表现形式是以时间或频率为自变量的实验曲线。
对过程施加特定的实验信号,同时测定过程的输出,可以求得这些非参数模型。
经过适当的数学处理,它们又可以转变成参数模型——传递函数的形式。
获取上述非参数模型,并把它们转化成传递函数的主要方法有:阶跃响应法脉冲响应法频率响应法相关分析法谱分析法这些辨识方法在工程上有广泛的应用,至今仍受到普遍重视。
在本次作业中,我主要使用了阶跃响应法中的面积法和脉冲响应法来对系统进行辨识,并且对系统施加一定的噪声干扰,比较在有误噪声情况下辨识结果的不同。
经典辨识方法报告1. 面积法1.1 辨识原理1.1.1 分子多项式为1的系统 11)(111++++=--s a sa s a s G n n nn ……………………………………………(1.1)由于系统的传递函数与微分方程存在着一一对应的关系,因此,可以通过求取微分方程的系数来辨识系统的传递函数。
在求得系统的放大倍数K 后,要先得到无因次阶跃响应y(t)(设τ=0)。
大多数自衡的工业过程对象的y(t)可以用下式描述来近似1)()()()(a 111=++++--t y dtt dy a dt t y d a dt t y d n n n n ……………………………(1.2) 面积法原则上可以求出n 为任意阶的各系数。
以n=3为例,注意到1|)(,0|)(d |)(d |)(d 23====∞→∞→∞→∞→t t t t t y dtt y dt t y dt t y …………………………(1.3) 将式(2.1.2)的y(t)项移至右边,在[0,t]上积分,得⎰-=++t dt t y t y a dtt dy a dt t y d a 01223)](1[)()()(…………………………………(1.4)定义⎰-=tdt t y t F 01)](1[)(……………………………………………………………(1.5)则由式(2.1.3)给出的条件可知,在t →∞⎰∞-=01)](1[a dt t y ……………………………………………………………(1.6)将式a 1y(t)移到等式右边,定义 )()]()([)()(a 201123t F dt t y a t F t y a dtt dy t =-=+⎰…………………………………(1.7)利用初始条件(2.1.3)当t →∞时)(a 22∞=F …………………………………………………………………… (1.8)同理有a 3=F 3(∞)以此类推,若n≥2,有a n =F n (∞)1.1.2 分子、分母分别为m 阶和n 阶多项式的系统当传递函数的形式如下所示时111111)()(11)(u h K m n s a s a s a s b s b s b K s G n n n n m m m m ∞=≥++++++++=---- …………………………………(1.9) 定义∑∞=----+=++++++++==1111111111)()(1)(i ii m m m m n n nn s c s b s b s b s a s a s a s P s P Ks G ………………………………(1.10)由于⎰∞--=-0**)](1[)](1[dte t h t h L st …………………………………………(1.11)则)](1[*t h -的Laplace 变换为: ∑∑∞=∞=-+=-=-111*1)(11)](1[i iii i i s C sC s sP s t h L ……………………………………(1.12)定义一阶面积1A 为:11110011lim )](*1[lim )](*1[c s C sC t h L dt t h A i ii i i i s s =+=-=-=∑∑⎰∞=∞=-→∞→………(1.13)令 )1(1)]([1*1s c s t h L +=……………………………………………………………(1.14)定义二阶面积为:2122**0012)1)(1()]()([limc s c s c sc dtd h h A i i i i i i is t=++=-=∑∑⎰⎰∞=∞=-→∞τττ…(1.15)同理,令 )...1(1)]([11221*1---++++=i i i s c s c s c s t h L …………………………………… (1.16)定义i 阶面积为i i c A =。