四川大学信号与系统期末考试题1
- 格式:doc
- 大小:219.00 KB
- 文档页数:3
四川大学期末考试试题(闭卷)A 卷答案(2009——2010学年第二学期)1 True or False Question (10 points)(1)[]sin(3/4)x n n = is aperiodic(非周期的) .( T )(2) The Fourier transform of an aperiodic discrete-time signal is periodic (T ) and continuous.(T ) (3) An LTI system with frequency function j t H j e 0()ωω= has linear phase(线性相位). (T)(4) e st is the eigenfunction(特征函数) of LTI systems.(F)(5) The continuous-time Fourier transform of a real-even signal is a real-even function. (T ) (6) The discrete-time Fourier transform of a real-even signal is an imaginary-odd function. ( F) (7) If the ROC (收敛域)of the Laplace transform X (s ) includes the unit circle of s -plane (s 平面),then ==()()s j X j X s ωω.(F)(8) If x (t ) is real and if X (s ) has a pole (极点)at s = s 0 , then X (s ) also has a pole at the point0-s s =. ( F)(9) A discrete-time LTI system is stable if and only if the ROC of its system function H (z ) includesthe unit circle of z -plane. (T )2 Blank Filling (20 points)(1) (1)*()t t δδ--=(1)t δ-.(2 points)(2) I f12[]{1,2,3},[]{1,2,3,4}x n x n ==↑↑, and 12[][][]y n x n x n =*, then the maximumlength of y [n ] is 6 . (2 points)(3) If the spectrum-density (谱密度)function of an aperiodic continues-time signal x (t ) is1()1X j j ωω=+, then the magnitude (幅度)of frequency response is (相位)of frequency response is arctg ω-. (3 points)(4) Expansion in the time domain corresponding to compressing (Compressing,Expansion )in the frequency domain. (2 points)(5) If ()()Fx t X j ω←−→, then 0()cos Fx t t ω←−→00[()][()]2X j X j ωωωω-++. (2 points)(6) If ()()F x t X j ω←−→, then the inverse Furious transform (傅里叶反变换) of 0[()]X j ωω- is 0()j tx t eω. (2 points)(7) Consider an LTI system with unit impulse response [][],||1n h n a u n a =<. The frequency response of the system is 11jweα--. The system is a lowpass (highpass, lowpass or bandpass)filter. (4 points)(8) Suppose 1()x t and 2()x t are band limited to 1ω, 2ω respectively, that is11()0,||X j ωωω=≥, 22()0,||X j ωωω=≥. Under the sampling theorem, the minimumsampling frequency (最小采样频率)is or 12122()2()2s s f ωωωωωπ+==+ .(3 points)3. Calculation(70 points)3.1 (15 points) Let x (t ) be the input to an LTI system with unit impulse response h (t ), whereand 2()()()()tx t eu t h t u t -==.Calculating the output of the system y (t ) by use of convolution integral equation (卷积公式), but not Fourier T ransform or Laplace T ransform. 解:2()()()()()t t y t x h t d e u u t d τττττττ--∞-∞=-=-⎰⎰当0t <时 ()0y t =当0t ≥时 2201()(1)2t ty t ed eττ--==-⎰3.2 (15 points) Suppose we are given the following information about a signal x (t ):a. x (t ) is real and odd.b. x (t ) is periodic (周期)with period T = 2 and has Fourier coefficients k a .c. 0k a = for ||1k > .d.22|()|1x t dt =⎰Specify two different signals that satisfy these conditions. 解:因x (t ) 为实、奇函数,因此可得. k k a a -=-且00a =, 又因当||1k >时0k a = ,因此不为零的傅里叶级数为11-a a 与 根据parseval 方程2201|()|||T k k x t dt a T+∞=-∞=∑⎰22221101|()|||||2x t dt a a -=+⎰,222101|()|2||2x t dt a =⎰,211||4a =所以,112a j = 或112a j =-,与此对应的112a j -=-或112a j -=111()sin()22j tj tx t jejet πππ-=-+=-211()sin()22j tj tx t jejet πππ-=-=3.3 (15 points) Consider a continuous-time ideal lowpass filter S whose frequencyresponse is()10c cHj ,,ωωωωω⎧<⎪=⎨>⎪⎩The input to this filter is a signal ()0sin tx t tωπ=, and the output of the filter is ()y t .Please answer the following questions:a. Calculate ()X j ω.解:0||1()||0X j ωωωωω<⎧=⎨≥⎩b. When 0c ωω<,determine ()y t .0sin ()ty t t ωπ= c. When 0c ωω>,determine ()y t .sin ()c ty t tωπ=d. In the case b or c, which will result in distortion(失真) in output ?C3.4 (15 points) The input x (t ) and output y (t ) of a causal (因果)LTI system are related through the block-diagram representation (方框图表示) shown in Fig. 1a. Determine the system function H (s ) and its ROC.b. Determine a differential equation (微分方程) relating y (t) and x (t ).c. Is the system stable (稳定)? 解:a.221()()()()Z s X s Z s Z s s s=-+,246()2()()()Y s Z s Z s Z s ss=+-消去中间变量Z(s) 可得22246()()21s s Y s X s s s +-=+-,故22246()21s s H s s s +-=+-因极点为1-±R e ()2s >- b. 微分方程为:2222()()()()2()246()d y t dy t d x t dx t y t x t dtdtdtdt+-=+-C. 因收敛域不包含ωj 故系统不稳定。
信号及系统期末考试试题及答案一、选择题(每题2分,共20分)1. 信号x(t)=3cos(2π(5t+π/4))是一个:A. 周期信号B. 非周期信号C. 随机信号D. 确定性信号2. 系统分析中,若系统对单位阶跃函数的响应为u(t)+2,则该系统为:A. 线性时不变系统B. 线性时变系统C. 非线性时不变系统D. 非线性时变系统3. 下列哪个是连续时间信号的傅里叶变换:A. X(k)B. X(n)C. X(f)D. X(z)4. 信号通过线性时不变系统后,其频谱:A. 仅发生相位变化B. 仅发生幅度变化C. 发生幅度和相位变化D. 不发生变化5. 单位脉冲函数δ(t)的拉普拉斯变换是:A. 1B. tC. e^(-st)D. 1/s二、简答题(每题5分,共10分)1. 解释什么是卷积,并给出卷积的数学表达式。
2. 说明傅里叶变换与拉普拉斯变换的区别。
三、计算题(每题15分,共30分)1. 给定连续时间信号x(t)=e^(-t)u(t),求其傅里叶变换X(f)。
2. 给定离散时间信号x[n]=u[n]-u[n-3],求其z变换X(z)。
四、分析题(每题15分,共30分)1. 分析信号x(t)=cos(ωt)+2cos(2ωt)通过理想低通滤波器后输出信号的表达式,其中滤波器的截止频率为ω/2。
2. 讨论线性时不变系统的稳定性,并给出判断系统稳定性的条件。
五、论述题(每题10分,共10分)1. 论述信号的采样定理及其在数字信号处理中的应用。
参考答案一、选择题1. A2. A3. C4. C5. A二、简答题1. 卷积是信号处理中的一种运算,它描述了信号x(t)通过系统h(t)时,输出信号y(t)的计算过程。
数学表达式为:y(t) = (x * h)(t) = ∫x(τ)h(t-τ)dτ。
2. 傅里叶变换用于连续时间信号的频域分析,而拉普拉斯变换则适用于连续时间信号,并且可以处理有初始条件的系统。
三、计算题1. X(f) = 3[δ(f-5) + δ(f+5)]。
信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统期末考试题及答案(第⼀套)信号与系统期末考试题及答案(第⼀套)符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。
⼀、填空(共30分,每⼩题3分)1. 已知某系统的输⼊输出关系为(其中X(0)为系统初始状态,为外部激励),试判断该系统是(线性、⾮线性)(时变、⾮时变)系统。
线性时变2. 。
03.4. 计算=。
5. 若信号通过某线性时不变系统的零状态响应为则该系统的频率特性=,单位冲激响应。
系统的频率特性,单位冲激响应。
6. 若的最⾼⾓频率为,则对信号进⾏时域取样,其频谱不混迭的最⼤取样间隔。
为7. 已知信号的拉式变换为,求该信号的傅⽴叶变换=。
不存在8. 已知⼀离散时间系统的系统函数,判断该系统是否稳定。
不稳定9.。
310. 已知⼀信号频谱可写为是⼀实偶函数,试问有何种对称性)sgn(t )(t δ)(k δ)(t ε)(k ε)0(2)()()(2X dt t df t f t t y +=)(t f ________________?∞-=-+32_________)221()32(dt t t t δ?∞∞-=--_________)24()22(dt t t εε??∞∞-==--1)24()22(21dt dt t t εε},3,5,2{)()},3()({2)(021=↓=--=K k f k k k f kεε)()(21k f k f *________}12,26,21,9,2{)()(21↓=*k f k f )(t f ),(),()(00为常数t K t t Kf t y f -=)(ωj H ________=)(t h ________0)(t j Ke j H ωω-=)()(0t t K t h -=δ)(t f )(Hz f m )2()()(t f t f t y ==max T ________m ax T )(6121max max s f f T m==)1)(1(1)(2-+=s s s F )(ωj F ______2121)(---+=z z z H ______=+-+?∞∞-dt t t t )1()2(2δ______)(,)()(3ωωωωA e A j F j -=)(t f。
二、信号与系统习题《信号与系统》课程考试试题出题人: 时量: 120 分钟 总分 100 分一、 填空题 (每空2分,共30分)1.线性系统是指同时满足 (1) 性和 (2) 性的系统。
2.连续时间系统的分析方法有 (3) 、 (4) 和 (5) .3.= (6) 。
4.已知信号f (t )的带宽为△ω,则信号f(5t+3)的频带宽度为 (7) 。
5.f (t )的傅立叶变换为F(w),则f(t)cos (ω0t)实现信号的频谱搬移,其傅立叶变换为 (8) 。
6.连续时间系统因果的时域条件是 (9) ,稳定的充要条件是 (10) 。
7.已知某离散系统激励为单位阶跃信号之零状态响应(阶跃响应)是g(n),则其冲激响应h(n)= (11) 。
8. 该序列的周期为 (12) .9.离散时间系统的基本运算单元有 (13) , (14) ,和 (15) 。
二、选择题 (每个2分,共16分)1.下列叙述正确的有( )(A )各种离散信号都是数字信号; (B )各种数字信号都是离散信号; (C )数字信号的幅度只能取1或0;(D )将模拟信号采样直接得数字信号; 2.已知f (t ) F(ω),则y(t )=f(t)*δ(t+3)的频谱函数Y (ω)=( ) (A )F(ω)e j3ω (B )F(ω)e —j3ω (C )F(ω) (D )f (3)e j3ω3.若f (t)代表已录制声音的磁带上的信号,则下列表述正确的是( ) (A ) 2f (t)表示将此磁带的音量减小一倍播放; (B ) f(2t )表示将此磁带以二倍速度加快播放; (C) f(2t )表示将此磁带放音速度降低一半播放; (D ) f (—t)表示将此磁带上信号延时播放产生的信号。
4.系统的冲激响应与( )(A )输入激励信号有关 (B )系统的结构有关55()cos ()2tf t t dt δπ-=-⎰5()cos()94x n A n ππ=-(C)冲激强度有关 (D )产生冲激时刻有关5.已知0220cos()()st u t LT s ωω+ 则000cos ()()t t u t t LT ω--( )0022220000000222200cos()()()cos()sin()()()st st s t s A eB s s s t t s seCD s s ωωωωωωωω--+++-++6.系统函数为23()56H s s s =++的因果系统属于(A )系统。
信号与系统试题及答案(大学期末考试题)一、选择题(每题2分,共40分)1. 下列哪个信号是周期信号?A. 方波B. 单位冲激信号C. 随机信号D. 正弦信号答案:A2. 信号x(t)的拉普拉斯变换为X(s)。
若x(t)的区间平均功率为P,则X(s)的区间平均功率是多少?A. PB. 2πPC. P/2D. πP答案:D3. 系统的冲激响应为h(t)=e^(-2t)sin(3t)u(t)。
则该系统为什么类型的系统?A. 线性非时变系统B. 线性时不变系统C. 非线性非时变系统D. 非线性时不变系统答案:B4. 信号x(t)通过系统h(t)并得到输出信号y(t)。
若x(t)为周期为T的信号,则y(t)也是周期为T的信号。
A. 正确B. 错误答案:A5. 下列哪个信号不是能量有限信号?A. 常值信号B. 正弦信号C. 方波D. 三角波答案:B...二、填空题(每题4分,共40分)1. 离散傅里叶变换的计算复杂度为$O(NlogN)$。
答案:NlogN2. 系统函数$H(z) = \frac{1}{1-0.5z^{-1}}$的极点为0.5。
答案:0.5...三、简答题(每题10分,共20分)1. 请简要说明信号与系统的基本概念和关系。
答案:信号是波动的物理量的数学描述,而系统是对信号进行处理的方式。
信号与系统的关系在于信号作为系统的输入,经过系统处理后得到输出信号。
信号与系统的研究可以帮助我们理解和分析各种现实世界中的波动现象。
2. 请简要说明周期信号和非周期信号的区别。
答案:周期信号是在一定时间间隔内重复出现的信号,具有周期性。
非周期信号则不能被表示为简单的周期函数,不存在固定的重复模式。
...以上是关于信号与系统试题及答案的文档。
希望能对您的大学期末考试复习有所帮助。
祝您考试顺利!。
信号与系统期末考试试题一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的)1、 卷积f 1(k+5)*f 2(k-3) 等于 。
(A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3)2、 积分dt t t ⎰∞∞--+)21()2(δ等于 。
(A )1.25(B )2.5(C )3(D )5 3、 序列f(k)=-u(-k)的z 变换等于 。
(A )1-z z (B )-1-z z(C )11-z (D )11--z4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。
(A ))2(41t y (B ))2(21t y (C ))4(41t y (D ))4(21t y 5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —t u(t)时,系统的零状态响应y f (t)等于(A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t)(C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t)6、 连续周期信号的频谱具有(A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性7、 周期序列2)455.1(0+k COS π的 周期N 等于(A ) 1(B )2(C )3(D )4 8、序列和()∑∞-∞=-k k 1δ等于(A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku9、单边拉普拉斯变换()se s s s F 2212-+=的愿函数等于 ()()t tu A ()()2-t tu B ()()()t u t C 2- ()()()22--t u t D 10、信号()()23-=-t u tet f t的单边拉氏变换()s F 等于()A ()()()232372+++-s e s s ()()223+-s e B s()()()2323++-s se C s ()()332++-s s e D s二、填空题(共9小题,每空3分,共30分)1、卷积和[(0.5)k+1u(k+1)]*)1(k -δ=________________________2、单边z 变换F(z)=12-z z的原序列f(k)=______________________ 3、已知函数f(t)的单边拉普拉斯变换F(s)=1+s s,则函数y(t)=3e -2t ·f(3t)的单边拉普拉斯变换Y(s)=_________________________4、频谱函数F(j ω)=2u(1-ω)的傅里叶逆变换f(t)=__________________5、单边拉普拉斯变换ss s s s F +++=2213)(的原函数f(t)=__________________________ 6、已知某离散系统的差分方程为)1(2)()2()1()(2-+=----k f k f k y k y k y ,则系统的单位序列响应h(k)=_______________________7、已知信号f(t)的单边拉氏变换是F(s),则信号⎰-=2)()(t dx x f t y 的单边拉氏变换Y(s)=______________________________8、描述某连续系统方程为()()()()()t f t f t y t y t y +=++''''52该系统的冲激响应h(t)=9、写出拉氏变换的结果()=t u 66 ,=k t 22三、(8分)四、(10分)如图所示信号()t f ,其傅里叶变换()()[]t f jw F F =,求(1) ()0F (2)()⎰∞∞-dw jw F六、(10分)某LTI 系统的系统函数()1222++=s s s s H ,已知初始状态()(),20,00=='=--y y 激励()(),t u t f =求该系统的完全响应。
《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 D 。
A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 C 。
A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是 A 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 D 。
A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 B 。
A.tt22sin B.t t π2sin C. t t 44sin D. ttπ4sin 6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 A 。
A.∑∞-∞=-k k )52(52πωδπB. ∑∞-∞=-k k)52(25πωδπ C. ∑∞-∞=-k k )10(10πωδπD.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为C 。
A. )}(Re{ωj eX j B. )}(Re{ωj e X C. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 D 。
A. 500 B. 1000 C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 C 。