山西省忻州市高中物理 目标检测题 5.5向心加速度新人教版2 精
- 格式:doc
- 大小:149.01 KB
- 文档页数:3
5.5向心加速度同步练习一、选择题1.下列有关向心加速度的表达式正确的是 A. B. C. D.2.(多选题)关于匀速圆周运动的向心加速度,下列说法正确的是( ) A .向心加速度是描述线速度方向变化快慢的物理量B .向心加速度只改变线速度的方向,不改变线速度的大小C .向心加速度恒定D .向心加速度的方向时刻发生变化3.甲乙两个做匀速圆周运动的质点,它们的角速度之比为3:1,线速度之比为2:3,质量之比为1:1,那么下列说法中正确的是( )A .它们的半径之比是2:3B .它们的向心加速度之比为2:1C .它们的周期之比为3:1D .它们的向心力之比为1:24.质点做匀速圆周运动,用v 、ω、R 、a 、T 分别表示其线速度、角速度、轨道半径、加速度和周期的大小,则下列关系正确的是( )A .v=ωR 、ω=2πTB .v=ωR 、a=2RωC .ω=Rv 、ωT=2πD .v=TR 2、a=vω 5.(多选题)A 、B 两个质点,分别做匀速圆周运动,在相同的时间内它们通过的路程之比s A :s B =2:3,转过的角度之比φA :φB =3:2,则下列说法正确的是( ) A .它们的半径之比R A :R B =2:3B .它们的半径之比R A :R B =4:9C .它们的周期之比T A :T B =2:3D .它们的周期之比T A :T B =3:26.如图所示的皮带传动装置中,甲轮的轴和塔轮丙和乙的轴均为水平轴,其中,甲、丙两轮半径相等,乙轮半径是丙轮半径的一半.A 、B 、C 三点分别是甲、乙、丙三轮的边缘点,若传动中皮带不打滑,则( )A .A 、B 两点的线速度大小之比为2:1B .B 、C 两点的角速度大小之比为1:2C .A 、B 两点的向心加速度大小之比为2:1D .A 、C 两点的向心加速度大小之比为1:47.(多选题)图中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点.左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r .b 点在小轮上,到小轮中心的距离为r .c 点和d 点分别位于小轮和大轮的边缘上.若在传动过程中,皮带不打滑.则( )A .a 点与c 点的线速度大小相等B .a 点与b 点的角速度大小相等C .a 点与d 点的加速度大小相等D .a 点与d 点的角速度大小相等8.关于向心加速度,以下说法正确的是( )A .它描述了角速度变化的快慢B .它描述了线速度大小变化的快慢C .它描述了线速度方向变化的快慢D .公式a=rv 2只适用于匀速圆周运动 9.如图所示,悬线一端系一小球,另一端固定于O 点,在O 点正下方的P 点钉一个钉子,使悬线拉紧与竖直方向成一角度θ然后由静止释放小球,当悬线碰到钉子时,下列说法正确的是( )①小球的瞬时速度突然变大②小球的加速度突然变大③小球所需的向心力突然变大④悬线所受的拉力突然变大.A .①③④B .②③④C .①②④D .①②③10.如图所示,某转笔高手能让笔绕其上的某一点O 匀速转动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是()A. 笔杆上的点离O 点越近的,做圆周运动的向心加速度越大B. 笔杆上的各点做圆周运动的向心力是由重力提供的C. 若该同学使用水笔,笔尖上的小钢珠有可能因快速的转动被甩走D. 若该同学使用的是金属笔杆,且考虑地磁场的影响,则笔杆一定会受到安培力的作用11.(多选题)小球做匀速圆周运动,半径为R ,向心加速度为a ,则( )A .小球的角速度为ω=a RB .小球的运动周期T=2a RC .小球的时间t 内通过的路程s=aR •t D .小球在时间t 内通过的路程s=Ra •t12.(多选题)放在赤道上的物体Ⅰ和放在北纬60°处的物体Ⅱ,由于地球的自转,则它们随地球自转的( )A .角速度之比为ωⅠ:ωⅡ=2:1B .线速度之比为v Ⅰ:v Ⅱ=2:1C .向心加速度之比为a Ⅰ:a Ⅱ=2:1D .向心加速度之比为a Ⅰ:a Ⅱ=4:113.小球P 和Q 用不可伸长的轻绳悬挂在天花板上,P 球的质量大于Q 球的质量,悬挂P 球的绳比悬挂Q 球的绳短.将两球拉起,使两绳均被水平拉直,如图所示.将两球由静止释放.在各自轨迹的最低点,( )A .P 球的速度一定大于Q 球的速度B .P 球的动能一定小于Q 球的动能C .P 球所受绳的拉力一定大于Q 球所受绳的拉力D .P 球的向心加速度一定小于Q 球的向心加速度14.(多选题)如图所示,两个啮合的齿轮,其中小齿轮半径为10cm ,大齿轮半径为20cm ,大齿轮中C 点离圆心O 2的距离为10cm ,A 、B 两点分别为两个齿轮边缘上的点,则A 、B 、C 三点的( )A .线速度之比是1:1:1B .角速度之比是1:1:1C .向心加速度之比是4:2:1D .转动周期之比是1:2:215.物体做匀速圆周运动的过程中,保持不变的物理量是( )A .速度B .周期C .向心力D .向心加速度16.关于向心加速度的物理意义,下列说法正确的是( )A .它描述的是线速度方向变化的快慢B .它描述的是线速度大小变化的快慢C .它描述的是角速度变化的快慢D .以上说法都不正确17.如图所示,在匀速转动的圆盘上有一个与转盘相对静止的物体,物体相对于转盘的运动趋势是( )A .沿切线方向B .沿半径指向圆心C .沿半径背离圆心D .没有运动趋势18.(多选题)如图是磁带录音机的磁带盒的示意图,A 、B 为缠绕磁带的两个轮子边缘上的点,两轮的半径均为r ,在放音结束时,磁带全部绕到了B 轮上,磁带的外缘半径R=3r ,C 为磁带外缘上的一点,则此时开始进行倒带的瞬间( )A .A 、B 、('三点的角速度之比1:3:3B .A 、B 、C 三点的线速度之比3:1:3C .A 、B 、C 三点的周期之比1:3:3D .A 、B 、C 三点的向心加速度之比9:1:319.(多选题)小球做匀速圆周运动,半径为R ,向心加速度为a ,则( )A .小球的角速度为ω=aR B .小球的运动周期T=2πaR C .小球的时间t 内通过的位移s=a R •t D .小球在时间t 内通过的位移s=Ra •t二、填空题20.如图为一皮带传动装置,右轮的半径为r,a是它边缘上的一点.左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点和c点分别位于轮轴小轮和大轮的边缘上.若在传动过程中,皮带不打滑.则a、b、c三点的线速度大小之比为;a、b、c三点的角速度大小之比为;a、b、c三点的向心加速度大小之比为.21、如图所示,水平转台高1.25m,半径为0.2m,可绕通过圆心处的竖直转轴转动.转台的同一半径上放有质量均为0.4kg的可看成质点小物块A、B,A与转轴间距离为0.1m,B 位于转台边缘处,A、B间用长0.1m的细线相连,A、B与水平转台间最大静摩擦力均为0.54N,g=10m/s2.(1)当转台的角速度达到多大时细线上出现张力?(2)若细线承受能力足够大,当转台的角速度达到多大时A物块开始滑动?(3)若A物块恰好将要滑动时细线断开,不计空气阻力,求B平抛过程的水平射程?答案1.ABC2.ABD3.B4.D5.BC6.D7.AC8.C9.B 10.C 11.BD 12.BC 13.C 14.CD 15.B 16.A 17.C 18.BCD 19.BD20.2:1:2; 2:1:1; 4:1:2.21、(1)当B的摩擦力达到最大时,绳子开始出现张力,隔离对B分析,根据牛顿第二定律得,,解得.(2)当ω增大,A受静摩擦力也达到最大静摩擦力时,A开始滑动,设这时的角速度为ω′,对A物块有:f m﹣F T=mω2r对B物块有:f m+F T=mω2(2r)代入数据得角速度为:ω=3rad/s.(3)细线断开时,B的线速度v=r Bω=0.2×3m/s=0.6m/s,根据h=得,平抛运动的时间t=,B平抛运动的水平射程x=vt=0.6×0.5m=0.3m.答:(1)当转台的角速度达到2.6rad/s时细线上出现张力;(2)若细线承受能力足够大,当转台的角速度达到3rad/s时A物块开始滑动;(3)B平抛过程的水平射程为0.3m.。
第5章 第5节 向心加速度基础夯实1.(2018·绵阳中学高一检测)下列关于匀速圆周运动的说法,正确的是( ) A .匀速圆周运动是一种平衡状态 B .匀速圆周运动是一种匀速运动 C .匀速圆周运动是一种匀变速运动D .匀速圆周运动是一种速度和加速度都不断改变的运动 答案:D2.(2018·河北正定中学高一检测)在一棵大树将要被伐倒的时候,有经验的伐木工人就会双眼紧盯着树梢,根据树梢的运动情形就能判断大树正在朝着哪个方向倒下,从而避免被倒下的大树砸伤,从物理知识的角度来解释,以下说法正确的是( )A .树木开始倒下时,树梢的角速度较大,易于判断B .树木开始倒下时,树梢的线速度最大,易于判断C .树木开始倒下时,树梢的向心加速度较大,易于判断D .伐木工人的经验缺乏科学依据 答案:B3.(吉林一中高一检测)一物体以4m/s 的线速度做匀速圆周运动,转动周期为4s.则该物体在运动过程的任一时刻,速度变化率的大小为( )[:A .2m/s 2B .4m/s 2C .2πm/s 2D .4πm/s 2答案:C解析:a =2πv T=2πm/s 2.4.(2018·白鹭州中学高一检测)如果把地球近似地看成一个球体,在北京和广州各放一个物体随地球自转做匀速圆周运动,则下列说法中正确的是( )A .物体在北京和广州两地随地球自转的线速度相同B .物体在北京的向心加速度大于广州的向心加速度C .物体在北京和广州两地随地球自转的角速度相同D .物体在广州随地球自转的周期大于在北京的物体 答案:C5.(福建厦门六中高一检测)如图所示是自行车的轮盘与车轴上的飞轮之间的链条传动装置.P 是轮盘的一个齿,Q 是飞轮上的一个齿.下列说法中正确的是( )A .P 、Q 两点角速度大小相等B .P 、Q 两点向心加速度大小相等C .P 点向心加速度小于Q 点向心加速度D .P 点向心加速度大于Q 点向心加速度 答案:C解析:P 、Q 两点的线速度相等,由a =v2r知C 项正确,其余选项均错.6.(上海交大附中高一检测)如图所示是上海锦江乐园中的“摩天轮”,它高108m ,直径为98m ,每次可乘坐378人,每转一圈25min.摩天轮转动时,某一轿厢内坐有一位游客,则该游客随轮一起匀速转动的周期为______s ,向心加速度大小为______m/s 2.答案:1500s 8.6×10-4解析:T =25×60s=1500s ,a =4π2r T2=8.6×10-4m/s 27.在航空竞赛场里,由一系列路标塔指示飞机的飞行路径,在飞机转变方向时,飞行员能承受的最大向心加速度大小约为6g(g 为重力加速度).设一飞机以150m/s 的速度飞行,当加速度为6g 时,其路标塔转弯半径应该为多少?答案:r =382.65m解析:v =150m/s ,a n =6g =6×9.8m/s 2=58.8m/s 2由a n =v 2r 得,r =v 2a n =150258.8m =382.65m.8.(2018·银川高一检测)如图所示,质量为m 的小球用长为L 的悬绳固定于O 点,在O 点的正下方L3处有一颗钉子,把悬绳拉直与竖直方向成一定角度,由静止释放小球,则小球从右向左摆的过程中,悬绳碰到钉子前后小球的向心加速度之比为多少?答案:2 ∶3解析:在悬绳碰到钉子的前后瞬间,速度不变,做圆周运动的半径从L 变成了2L 3,则根据加速度公式a =v2r 知两次a 之比为半径之反比.即2 ∶3.能力提升1.如图所示为质点P 、Q 做匀速圆周运动时向心加速度随半径变化的图线,表示质点P 的图线是双曲线,表示质点Q 的图线是过原点的一条直线,由图线可知( )A .质点P 线速度大小不变B .质点P 的角速度大小不变C .质点Q 的角速度随半径变化D .质点Q 的线速度大小不变 答案:A解析:根据图象提供的曲线的性质建立起质点做匀速圆周运动的向心加速度a 随半径r 变化的函数关系,再根据这个函数关系,结合向心加速度的计算公式作出判断.由a =v 2r 和a =ω2r 知当v 一定时a ∝1r ;当ω一定时a ∝r 所以选项A 正确.2.(2018·银川一中高一检测)某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r 1、r 2、r 3,若甲轮的角速度为ω,则丙轮边缘上某点的向心加速度为( )A.r 12ω2r 3B.r 32ω2r 12C.r 33ω2r 22D.r 1r 2ω2r 3[:答案:A解析:∵ω1r 1=ω3r 3 ∴ω3=ω1r 1r 3 ∴a 3=ω32r 3=ω2r 12r 33.如图所示,一小物块以大小为a =4m/s 2的向心加速度做匀速圆周运动,半径R =1m ,则下列说法正确的是( )[:A .小球运动的角速度为2rad/sB .小球做圆周运动的周期为πSC .小球在t =π4s 内通过的位移大小为π20mD .小球在πs 内通过的路程为零 答案:A B解析:小球在π4s 内转过90°通过的位移为2R ,πs 内转过一周,路程为2πR.4.载人航天器在发射和降落时,宇航员会发生黑视,其原因一是因血压降低,二是因为大脑缺血.为此,航天器的气密舱有特殊的设计,如图所示,它固定在一个横轴上,可绕轴做360°旋转,这样设计的目的是( )A .宇航员舒适些B .宇航员始终承受横向加速度C .宇航员始终承受负加速度D .宇航员始终承受正加速度 答案:B5.如图所示,圆弧轨道AB 是在竖直平面内的14圆周,在B 点轨道的切线是水平的,一质点自A 点从静止开始下滑,滑到B 点时的速度大小是2gR ,则在质点刚要到达B 点时的加速度大小为__________,滑过B 点时的加速度大小为____________.[:答案:2g g解析:小球由A 点到B 点所做的运动是圆周运动的一部分,因而小球刚要到达B 点时的运动为圆周运动的一部分,其加速度为向心加速度,大小为:a =v 2R ,将v =2gR 代入可得a =2gRR =2g ,小球滑过B 点后做平抛运动,只受重力作用,加速度大小为g.注:解题时一定要认真审题,充分挖掘题目中所给出的隐含条件,如本题中的“到达B 点时”和“滑过B 点时”.6.(2018·山大附中高一检测)一部机器由电动机带动,机器上的皮带轮的半径是电动机皮带轮半径的3倍(如图),皮带与两轮之间不发生滑动.已知机器皮带轮边缘上一点的向心加速度为0.10m/s 2.(1)电动机皮带轮与机器皮带轮的角速度之比ω1∶ω2=?(2) 机器皮带轮上A 点到转轴的距离为轮半径的一半,A 点的向心加速度是多少? 答案:(1)3 ∶1 (2)0.05m/s 2[:解析:(1)∵ω1r 1=ω2r 2 ∴ω1 ∶ω2=r 2∶r 1=3 ∶1(2)由a 2=ω22r 2,a A =ω22r A 得a A =0.05m/s 2.7.如图所示,压路机大轮的半径R 是小轮半径r 的2倍,压路机匀速行进时,大轮边缘上A 点的向心加速度是0.12m/s 2,那么小轮边缘上的B 点向心加速度是多少?大轮上距轴心的距离为R 3的C 点的向心加速度是多大?答案:0.24m/s 20.04m/s 2解析:∵v B =v A ,由a =v 2r ,得a B a A =r Ar B =2,∴a B =0.24m/s 2,∵ωA =ωC ,由a =ω2r ,得a C a A =r C r A =13∴a C =0.04m/s 2.。
5.5 向心加速度一、单项选择题1.下列说法正确的是( )A .做匀速圆周运动的物体,线速度不变B .做匀速圆周运动的物体,任意相等时间内速度变化相等C .向心加速度和半径成正比D .向心加速度是反映速度变化快慢程度的物理量解析:选D.线速度是矢量,做匀速圆周运动的物体,线速度时刻在改变,选项A 错误;做匀速圆周运动的物体,任意相等时间内速度变化不相等,选项B 错误;在角速度不变的情况下,向心加速度和半径成正比,选项C 错误;选项D 正确.2.做匀速圆周运动的两物体甲和乙,它们的向心加速度分别为a 1和a 2,且a 1>a 2,下列判断正确的是( )A .甲的线速度大于乙的线速度B .甲的角速度比乙的角速度小C .甲的轨道半径比乙的轨道半径小D .甲的速度方向比乙的速度方向变化快解析:选D.由于不知甲和乙做匀速圆周运动的半径大小关系,故不能确定它们的线速度、角速度的大小关系,A 、B 、C 错.向心加速度是表示线速度方向变化快慢的物理量,a 1>a 2,表明甲的速度方向比乙的速度方向变化快,D 对.3.A 、B 两小球都在水平面上做匀速圆周运动,A 球的轨道半径是B 球轨道半径的2倍,A 的转速为30 r/min ,B 的转速为15 r/min.则两球的向心加速度之比为( )A .1∶1B .2∶1C .4∶1D .8∶1解析:选D.由公式a =ω2r =4π2n 2r 得a A ∶a B =n 2A r A ∶n 2B r B ,代入数据得a A ∶a B =8∶1,故选D.4.如图所示,A 、B 为咬合传动的两齿轮,r A =2r B ,则A 、B 两轮边缘上两点的( ) A .角速度之比为2∶1 B .向心加速度之比为1∶2 C .周期之比为1∶2 D .转速之比为2∶1解析:选B.根据两轮边缘线速度相等,由v =ωr 得,角速度之比为ωA ∶ωB =v A r B ∶v B r A =1∶2,故A 错误;由a n =v 2r得向心加速度之比为a A ∶a B =v 2A r B ∶v 2B r A =1∶2,故B 正确;由T =2πr v 得周期之比为T A ∶T B =r A v B ∶r B v A =2∶1,故C 错误;由n =ω2π得转速之比为n A ∶n B =ωA ∶ωB =1∶2,故D 错误.5.一小球被细线拴着做匀速圆周运动,其半径为R ,向心加速度为a ,则( ) A .小球相对于圆心的位移不变B .小球的线速度大小为RaC .小球在时间t 内通过的路程s =a Rt D .小球做圆周运动的周期T =2πRa解析:选D.小球做匀速圆周运动,各时刻相对圆心的位移大小不变,但方向时刻在变,A 错误;由a =v 2R 得v =Ra ,B 错误;在时间t 内通过的路程s =v t =t Ra ,C 错误;做圆周运动的周期T =2πR v=2πR Ra=2πR a ,D 正确.6.如图所示,圆弧轨道AB 在竖直平面内,在B 点,轨道的切线是水平的,一小球由圆弧轨道上的某点从静止开始下滑,不计任何阻力.设小球刚到达B 点时的加速度为a 1,刚滑过B 点时的加速度为a 2,则( )A .a 1、a 2大小一定相等,方向可能相同B .a 1、a 2大小一定相等,方向可能相反C .a 1、a 2大小可能不等,方向一定相同D .a 1、a 2大小可能不等,方向一定相反解析:选D.刚到达B 点时,小球仍做圆周运动,此时a 1=v 2BR,方向竖直向上,当刚滑过B 点后,小球做平抛运动,a 2=g ,方向竖直向下,v 2BR有可能等于g ,也可能不等于g ,故D 正确.7.如图所示,两轮用皮带传动,皮带不打滑.图中有A 、B 、C 三点,这三点所在处半径关系为r A >r B=r C ,则这三点的向心加速度a A 、a B 、a C 的关系是( )A .a A =aB =aC B .a C >a A >a B C .a C <a A <a BD .a C =a B >a A解析:选C.由题意可知:v A =v B ,ωA =ωC ,而a n =v 2r=ω2r .v 一定,a n 与r 成反比;ω一定,a n 与r 成正比.比较A 、B 两点,v A =v B ,r A >r B ,故a A <a B ;比较A 、C 两点,ωA =ωC ,r A >r C ,故a C <a A ,所以a C <a A <a B ,故选C.8.如图为一压路机的示意图,其大轮半径是小轮半径的1.5倍.A 、B 分别为大轮和小轮边缘上的点.在压路机前进时( )A .A 、B 两点的线速度之比为v A ∶v B =1∶1 B .A 、B 两点的线速度之比为v A ∶v B =3∶2C .A 、B 两点的角速度之比为ωA ∶ωB =3∶2D .A 、B 两点的向心加速度之比为a A ∶a B =3∶2解析:选A.由题意知v A ∶v B =1∶1,故A 正确,B 错误;由ω=vr得ωA ∶ωB =r B ∶r A =2∶3,故C错误;由a =v 2r得a A ∶a B =r B ∶r A =2∶3,故D 错误.9.如图所示,长为l 的细线一端固定在O 点,另一端拴一质量为m 的小球,让小球在水平面内做角速度为ω的匀速圆周运动,摆线与竖直方向成θ角,小球运动的周期和小球的向心加速度为( )A .T =4π2ω2,a n =ω2l sin θB .T =2πω,a n =ω2lC .T =2πω,a n =ω2l sin θD .T =4π2ω2,a n =ω2l解析:选C.由ω=2πT 得T =2πω;小球做匀速圆周运动的轨道半径为l sin θ,所以向心加速度a n =ω2l sinθ,故选C.☆10.一小球质量为m ,用长为L 的悬绳(不可伸长,质量不计)固定于O 点,在O 点正下方L2处钉有一颗钉子.如图所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子的瞬间,则下列说法错误的是( )A .小球的角速度突然增大B .小球的线速度不变C .小球的向心加速度突然增大D .小球的向心加速度不变解析:选D.小球的线速度不能发生突变,由于做圆周运动的半径变为原来的一半,由v =ωr 知,角速度为原来的两倍;由a =v 2r知,小球的向心加速度变为原来的两倍,故A 、B 、C 正确.二、非选择题11.物体以30 m/s 的速率沿半径为60 m 的圆形轨道运动,当物体从A 运动到B 时,物体相对圆心转过的角度为90°,试求:(1)物体周期的大小;(2)物体通过的路程;(3)物体运动的向心加速度的大小.解析:(1)由v =2πr T 得周期T =2πr v =2π×6030s =4π s.(2)物体通过的路程即通过的弧长,物体与圆心的连线转过的角度为90°,即经过的时间t =14T =π s所以s =v t =30×π m =30π m.(3)向心加速度a =v 2r =30260m/s 2=15 m/s 2.答案:(1)4π s (2)30π m (3)15 m/s 2☆12.如图所示,定滑轮的半径r =2 cm ,绕在滑轮上的细线悬挂着一个重物,由静止开始释放,测得重物以加速度a =2 m/s 2做匀加速运动,在重物由静止下落1 m 的瞬间.(1)滑轮边缘上的P 点做圆周运动的角速度是多大? (2)P 点的向心加速度是多大? 解析:(1)根据公式v 2=2ax 得 v =2ax =2×2×1 m/s =2 m/s. 由公式v =ωr 得ω=v r =22×10-2rad/s =100 rad/s.(2)由公式a =v 2r 知a =222×10-2 m/s 2=200 m/s 2. 答案:(1)100 rad/s (2)200 m/s 213.一辆赛车在半径为50 m 的水平圆形赛道参加比赛,已知该赛车匀速率跑完最后一圈所用时间为15 s ,则该赛车完成这一圈的角速度大小为________rad/s ,向心加速度大小为________m/s 2(结果均保留2位小数).解析:因为角速度ω=2πT ,所以该赛车完成这一圈的角速度大小为ω=2π15rad/s =0.42 rad/s ,向心加速度a n =ω2r =8.82 m/s 2.答案:0.42 8.8214.在绕竖直轴匀速转动的圆环上有两个物体A 、B ,如图所示,过A 、B 的半径与竖直轴的夹角分别为30°和60°,则A 、B 两点的线速度之比为多少?解析:A 、B 两点做圆周运动的半径分别为r A =R sin 30°=12R ,r B =R sin 60°=32R .它们的角速度相同,故线速度之比v A v B =ωr A ωr B =33,加速度之比a A a B =ω2r A ω2r B =33.答案:3∶3 3∶3。
5.5 向心加速度一、选择题(本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中. 1~6题只有一项符合题目要求;7~8题有多项符合题目要求。
全部选对的得5分,选对但不全的得3分,有选错的得0分。
)1.某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r1、r2、r3,若甲轮的角速度为ω,则丙轮边缘上某点的向心加速度为:()A . B. C. D.【答案】A【解析】2.如图所示,细绳的一端固定,另一端系一小球,让小球在光滑水平面内做匀速圆周运动,关于小球运动到P点时的加速度方向,下列图中可能的是:()【答案】B【解析】做匀速圆周运动的物体的加速度就是向心加速度,其方向指向圆心,B正确。
3.一物体以12 m/s的线速度做匀速圆周运动,转动周期为3 s,则物体在运动过程中的任一时刻,速度变化率的大小为:()A.23m/s2 B.8 m/s2C.0 D.8π m/s2【答案】D【解析】由于物体的线速度v=12 m/s,角速度ω=2Tπ=23πrad/s。
所以它的速度变化率a n=vω=12×23πm/s2=8π m/s2,D正确。
4.A、B两个质点分别做匀速圆周运动,在相等时间内通过的弧长之比:4:3A BS S=,转过的圆心角之比:3:2A Bθθ=,则下列说法中正确的是:()A.它们的线速度之比:4:3A Bv v=B.它们的角速度之比:2:3A Bωω=C.它们的周期之比:3:2A BT T=D.它们的向心加速度之比:3:2A Ba a=【答案】A【解析】5.如图所示,在皮带传动装置中,主动轮A和从动轮B半径不等,皮带与轮之间无相对滑动,则下列说法中正确的是:()A.两轮的角速度相等B.两轮边缘的线速度大小相同C.两轮边缘的向心加速度大小相同D.两轮转动的周期相同【答案】B【解析】6.关于物体随地球自转的加速度,下列说法中正确的是:()A.在赤道上最大 B.在两极上最大C.地球上处处相同 D.随纬度的增加而增大【答案】A【解析】解:A、B、C、D:物体随地球自转角速度相同,但自转的圆心在地轴上,自转的半径由赤道向两极逐渐减小,赤道处最大,由公式a=ω2r知:自转的加速度由赤道向两极逐渐减小,因此,选项A正确,选项B、C、D错误.故选:A.7.下列说法中正确的是:()A.向心加速度越大,物体速率变化越快B.向心加速度大小与轨道半径成反比C.向心加速度方向始终指向圆心D.在匀速圆周运动中,向心加速度是变化的【答案】CD【解析】A、向心加速度只改变物体的速度的方向不改变速度的大小,所以向心加速度越大,表示物体速度方向变化越快,故A错误;B、根据向心加速度公式a==ω2R,当线速度一定时,向心加速度大小与轨道半径成反比,当角速度一定时,向心加速度大小与轨道半径成正比,所以B错误.C、向心加速度只改变物体的速度的方向不改变速度的大小,即向心加速度的方向始终与速度方向垂直,即方向始终指向圆心,所以C正确.D、做匀速圆周运动的物体,要受到始终指向圆心的力的作用来做为向心力,力的大小不变,但方向时刻在变,所以向心加速度也是变化的,是变加速运动,所以D正确.故选:CD.8.如图所示为一皮带传动装置,右轮半径为r,a为它边缘上一点;左侧是一轮轴,大轮半径为4r,小轮半径为2r,b点在小轮上,到小轮中心的距离为r。
人教版必修2《5.5 向心加速度》同步练习卷过基础教材基础知识精练1. 关于做匀速圆周运动的物体的向心加速度,下列说法正确的是()A.向心加速度的大小和方向都不变B.向心加速度的大小和方向都不断变化C.向心加速度的大小不变,方向不断变化D.向心加速度的大小不断变化,方向不变2. 对于匀速圆周运动中,向心加速度的物理意义,下列说法正确的是()A.它描述的是线速度方向变化的快慢B.它描述的是周期变化的快慢C.它描述的是线速度大小变化的快慢D.它描述的是角速度变化的快慢3. 一质点做半径为r的匀速圆周运动,它的加速度、角速度、线速度、周期分别为a、ω、v、T,下列关系中正确的有()A.ω=√ar B.v=r√a C.a=vω D.T=2π√ra4. 计算机中的硬磁盘磁道如图所示,硬磁盘绕磁道的圆心O转动,A、B两点位于不同的磁道上,线速度分别为v A和v B,向心加速度分别为a A和a B,则它们大小关系正确的是()A.v A<v B a A<a BB.v A>v B a A<a BC.v A<v B a A>a BD.v A>v B a A>a B5. 如图所示,在风力发电机的叶片上有A、B、C三点,其中A、C在叶片的端点,B在叶片的中点.当叶片转动时,这三点()A.线速度大小都相等B.线速度方向都相同C.角速度大小都相等D.向心加速度大小都相等过能力能力提升强化训练如图所示,从A、B两物体做匀速圆周运动时的向心加速度随半径变化的关系图线中可以看出()A.B物体运动时,其线速度的大小不变B.B物体运动时,其角速度不变C.A物体运动时,其角速度不变D.A物体运动时,其线速度随r的增大而减小如图所示,长为L的细绳一端固定在O点,另一端拴住一个小球,在O点的正下方与O 点相距L的地方有一枚与竖直平面垂直的钉子,把球拉起使细绳在水平方向伸直,由静2止开始释放,当细绳碰到钉子的瞬间,下列说法正确的是()A.小球的角速度突然增大B.小球的线速度突然增大C.小球的向心加速度突然增大D.小球的向心加速度不变汽车后备箱盖一般都配有可伸缩的液压杆,如图甲所示,其示意图如图乙所示,可伸缩液压杆上端固定于后盖上A点,下端固定于箱内O′点,B也为后盖上一点,后盖可绕过O点的固定铰链转动,在合上后备箱盖的过程中()A.A点相对O′点做圆周运动B.A点与B点相对于O点转动的线速度大小相等C.A点与B点相对于O点转动的角速度大小相等D.A点与B点相对于O点转动的向心加速度大小相等由于地球自转,比较位于赤道上的物体1与位于北纬60∘的物体2,则()A.它们的角速度之比ω1:ω2=2:1B.它们的线速度之比v1:v2=2:1C.它们的向心加速度之比a1:a2=2:1D.它们的向心加速度之比a1:a2=4:1过专项必做题型专项训练图示为锥形齿轮的传动示意图,大齿轮带动小齿轮转动,大、小齿轮的角速度大小分别为ω1、ω2,两齿轮边缘处的线速度大小分别为v1、v2,则()A.ω1<ω2,v1=v2B.ω1>ω2,v1=v2C.ω1=ω2,v1>v2D.ω1=ω2,v1<v2现在许多汽车都应用了自动无级变速装置,不用离合器就可连续变换速度.如图为截锥式无级变速模型示意图,主动轮、从动轮之间有一个滚动轮,它们之间靠彼此的摩擦力带动.当滚动轮处于主动轮直径为D1、从动轮直径为D2的位置时,主动轮转速n1与从动轮转速n2的关系是()A.n1 n2=D2D1B.n1n2=D1D2C.n1n2=√D1D2D.n1n2=D22D12某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r1、r2、r3,若甲轮匀速转动的角速度为ω,三个轮相互不打滑,则丙轮边缘上各点的向心加速度大小为()A.r12ω2r3B.r32ω2r12C.r33ω2r12D.r1r2ω2r3明代出版的《天工开物》一书中就有牛力齿轮翻车的图画(如图所示),记录了我们祖先的劳动智慧。
2016-2017学年高中物理专题5.5 向心加速度(练)(基础版)(含解析)新人教版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中物理专题5.5 向心加速度(练)(基础版)(含解析)新人教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中物理专题5.5 向心加速度(练)(基础版)(含解析)新人教版必修2的全部内容。
5。
5 向心加速度1.如图所示,两轮用皮带传动,皮带不打滑。
图中有A、B、C三点,这三点所在处的半径r A〉r B=r C,则这三点的向心加速度a A、a B、a C的大小关系是: ()A.a A=a B=a C B.a C〉a A〉a BC.a C<a A〈a B D.a C=a B>a A【答案】C【解析】两轮通过皮带传动,故A、B两点的线速度大小相等,由a=2vr知,a A〈a B;又A、C两点在同一轮子上,故A、C两点的角速度相等,由a=ω2r知,a C<a A,C正确.2.匀速圆周运动中的向心加速度是描述: ( )A.线速度大小变化的物理量B.线速度大小变化快慢的物理量C.线速度方向变化的物理量D.线速度方向变化快慢的物理量【答案】D3.关于匀速圆周运动,下列说法正确的是:()A.由于,所以线速度大的物体的向心加速度大B.匀速圆周运动中物体的周期保持不变C.匀速圆周运动中物体的速度保持不变D.匀速圆周运动中物体的向心加速度保持不变【答案】B【解析】解:A、由于,只有当半径r不变的前提下,才有线速度大的物体的向心加速度大,而半径没说是不变的,所以A选项错误.B、既然是匀速圆周运动了,那么物体的速度的大小一定不变,同一个物体的匀速圆周运动,半径当然也是不变的,由T=可知,周期保持不变,所以B选项正确.C、做匀速圆周运动的物体,它的速度的大小是不变的,但速度的方向时刻在变,所以C错误.D、匀速圆周运动中物体的向心加速度,只是向心加速度的大小不变,方向是变化的,应该说是向心加速度的大小保持不变,所以D选项错误.故选:B.4.关于向心加速度,以下说法正确的是: ( )A.它描述了角速度变化的快慢B.它描述了线速度大小变化的快慢C.它描述了线速度方向变化的快慢D.公式a=只适用于匀速圆周运动【答案】C【解析】5.关于向心加速度的物理意义,下列说法正确的是: ()A.它描述的是线速度方向变化的快慢B.它描述的是线速度大小变化的快慢C.它描述的是向心力变化的快慢D.它描述的是角速度变化的快慢【解析】圆周运动的向心加速度只改变速度的方向,不改变速度大小,向心加速度描述的是线速度方向变化的快慢的物理量;做圆周运动物体的切向加速度改变线速度的大小,描述线速度大小变化的快慢.故A正确,BC错误,角速度的方向垂直圆周所在的平面,始终与向心加速度垂直,向心加速度不改变角速度的大小和方向,故D错误.故选A。
《5. 向心加速度》同步训练(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、一物体沿圆周运动,其半径为R,角速度为ω,则该物体的向心加速度大小为()A、RωB、Rω²C、ω²RD、Rω³2、一个物体做匀速圆周运动,其线速度为v,半径为R,则该物体的向心加速度大小是()A、v/RB、v²/RC、vRD、vR²3、一个质量为2kg的物体,在一个半径为1m的圆周上以4m/s的速度做匀速圆周运动,其向心加速度的大小为()m/s²。
A、4B、8C、16D、324、若一个物体正在沿着一个固定的圆周路径做匀速圆周运动,且其线速度大小为5m/s,圆周半径为2m,那么经过2秒后,该物体的向心加速度改变了()m/s²。
A、0B、2.5C、10D、55、在匀速圆周运动中,物体所受的向心力大小保持不变,但方向不断改变。
下列关于向心加速度的描述正确的是:A、向心加速度的大小与物体的速度大小成正比B、向心加速度的大小与物体的质量成正比C、向心加速度的大小与物体所在圆周的半径成反比D、向心加速度的方向始终指向圆心6、一个物体做匀速圆周运动,半径为10米,周期为2秒。
下列关于物体运动状态的描述正确的是:A、物体在任意时刻的加速度大小都相同B、物体在任意时刻的加速度方向都相同C、物体在任意时刻的向心加速度都相等D、物体在任意时刻的线速度都相等7、一物体做匀速圆周运动,其转动角速度为ω,线速度大小为 v。
当其线速度大小变为 2v 时,则其向心加速度大小变为原来的()。
A、1/2 倍B、2 倍C、4 倍D、1/4 倍二、多项选择题(本大题有3小题,每小题6分,共18分)1、以下选项中,哪些陈述关于向心加速度是正确的?A、向心加速度的方向始终指向圆心B、向心加速度的大小与物体在圆周运动中的速度成正比C、向心加速度的存在不会改变物体的动能D、匀速圆周运动中的向心加速度是恒定的2、一个物体在水平面上做匀速圆周运动,以下关于向心加速度的陈述哪些是正确的?A、物体的向心加速度与圆周运动的半径成反比B、物体的向心加速度与物体的质量成正比C、物体的向心加速度与物体的速度成正比D、物体的向心加速度在圆周的不同位置是相等的3、下列关于向心加速度的说法正确的是()A、物体做匀速圆周运动时,向心加速度大小不变,方向始终指向圆心B、物体做非匀速圆周运动时,向心加速度大小和方向都会发生变化C、向心加速度的方向与物体运动方向垂直,因此物体在圆周运动过程中不会受到向心加速度的作用D、向心加速度是由物体做圆周运动而产生的,与物体的质量无关三、非选择题(前4题每题10分,最后一题14分,总分54分)第一题题目:一物体在半径为R的圆周轨道上做匀速圆周运动,运动的速度大小为v。
5向心加速度一、选择题1.关于匀速圆周运动的说法,正确的是()A.匀速圆周运动是匀速运动B.匀速圆周运动是匀变速运动C.匀速圆周运动是加速度不变的运动D.匀速圆周运动是加速度不断改变的运动2.关于质点做匀速圆周运动,下列说法中正确的是()A.线速度大,加速度一定大B.角速度大,加速度一定大C.周期大,加速度一定大D.加速度大,速度一定变化快3.下列说法中正确的是()A.匀速圆周运动的速度大小保持不变,所以做匀速圆周运动的物体没有加速度B.做匀速圆周运动的物体,虽然速度大小不变,但方向时刻都在改变,所以必有加速度C.做匀速圆周运动的物体,加速度的大小保持不变,所以是匀变速(曲线)运动D.匀速圆周运动的加速度大小虽然不变,但方向始终指向圆心,加速度的方向发生了变化,所以匀速圆周运动既不是匀速运动,也不是匀变速运动4.如图1所示,一个球绕中心轴线OO′以角速度ω做匀速圆周运动,则()图1A.a、b两点线速度相同B.a、b两点角速度相同C.若θ=30°,则a、b两点的线速度之比v a∶v b=3∶2D.若θ=30°,则a、b两点的向心加速度之比a a∶a b=2∶ 35.如图2所示,两轮压紧,通过摩擦传动(不打滑),已知大轮半径是小轮半径的2倍,E为大轮半径的中点,C、D分别是大轮和小轮边缘的一点,则E、C、D三点向心加速度大小关系正确的是()图2A.a nC=a nD=2a nEB.a nC=2a nD=2a nEC .a nC =a nD2=2a nED .a nC =a nD2=a nE6.A 、B 两个质点分别做匀速圆周运动,在相同时间内它们通过的路程比s A ∶s B =2∶3,转过的角度比φA ∶φB =3∶2,则下列说法中正确的是( )A .它们的周期比T A ∶TB =2∶3 B .它们的周期比T A ∶T B =3∶2C .它们的向心加速度大小比a A ∶a B =4∶9D .它们的向心加速度大小比a A ∶a B =9∶47.如图3所示为一皮带传动装置,右轮的半径为r ,a 是边缘上的一点,左轮是一轮轴,大轮的半径为4r ,小轮的半径为2r ,b 点在小轮上,到小轮中心的距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中皮带不打滑,则( )图3A .a 点和b 点的线速度大小相等B .a 点和b 点的角速度相等C .a 点和c 点的线速度大小相等D .a 点和d 点的向心加速度的大小相等二、非选择题8.汽车以一定的速度在草原上沿直线匀速行驶,突然发现正前方有一壕沟,为了尽可能地避免掉进壕沟,通常有急转弯或急刹车两种方式.假设汽车急转弯做匀速圆周运动,急刹车做匀减速直线运动,且转弯时的向心加速度大小等于刹车时的加速度,请问司机是紧急刹车好,还是马上急转弯好?9.如图4所示,一轿车以30 m/s 的速率沿半径为60 m 的圆形跑道行驶,当轿车从A 运动到B 时,轿车和圆心O 的连线转过的角度为90°.求:图4(1)此过程中轿车的位移大小; (2)此过程中轿车通过的路程; (3)轿车运动的向心加速度大小.学案5 向心加速度答案1.D2.D [由an =v 2r 知,只有当r 一定时,线速度大,加速度才一定大,故A 错误;同理,只有当r 一定时,ω大an 才一定大,故B 错误;由ω=2πT ,得a =ω2r =⎝⎛⎭⎫2πT 2r ,a 的大小与r 和T 都有关,故C 错误;加速度是描述物体速度变化快慢的物理量,不过在匀速圆周运动中,“速度变化快慢”是指速度方向变化的快慢,故D 正确.]3.BD4.BC [a 、b 两点绕同轴转动,角速度相同,由于半径不同,线速度不同,v =ωr ,v a ∶v b =r a ∶r b =32R ∶R =3∶2.an =ω2r ,a a ∶a b =r a ∶r b =3∶2,所以A 、D 错误,B 、C 正确.]5.C [同轴转动,C 、E 两点的角速度相等,由an =ω2r ,有a nCa nE=2,即a nC =2a nE ;两轮边缘点的线速度大小相等,由an =v 2r ,有a nC a nD =12,即a nC =12a nD ,故选C.]6.A [由v =Δs Δt 得v A v B =s A s B =23,由ω=ΔθΔt 得ωA ωB =φA φB =32,则T A T B =ωB ωA =23,A 正确; a A a B =v A ωA v B ωB =23×32=1,C 、D 均不正确.] 7.CD [由题意可知,b 、c 、d 是固定在同一转轴上的两轮上的点,因此ωb =ωc =ωd ,a 、c 为用皮带连接的两轮边缘上的点,皮带不打滑时有v a =v c ,故选项C 正确.由角速度与线速度之间的关系v =ωr 并结合题中所给各点的半径,易得ωa =2ωc =2ωb =2ωd 及v a =2v b ,由此排除A 、B 两选项.由向心加速度an =ω2r 可推得a na =a nd ,则选项D 正确.]8.见解析解析 设汽车匀速行驶时的速度大小为v ,避免掉进壕沟采取措施后的加速度大小为a ,若汽车急转弯,则有a =v 2R ,转弯半径最小R =v 2a ;若汽车急刹车,则有v 2=2ax ,汽车前进的最小距离x =v 22a,因为R>x ,所以司机应紧急刹车才是明智之举.9.(1)85 m (2)94.2 m (3)15 m/s 2解析 如图所示, v =30 m/s , r =60 m ,θ=90°=π2.(1)轿车的位移为从初位置A 到末位置B 的有向线段的长度, 即x =2r =2×60 m ≈85 m.(2)路程等于弧长,即l =rθ=60×π2 m ≈94.2 m.(3)向心加速度大小 an =v 2r =30260 m/s 2=15 m/s 2。
强化训练5 向心加速度题组一对向心加速度的解1关于向心加速度的说法正确的是()A向心加速度越大,物体速率变越快B向心加速度的大小与轨道半径成反比向心加速度的方向始终与线速度方向垂直D在匀速圆周运动中向心加速度是恒量解析向心加速度只反映速度方向变的快慢,A错误;向心加速度的大小可用=或=ω2r表示,当v一定时,与r成反比,当ω一定时,与r成正比,可见与r的比例关系是有条件的,故B错误;向心加速度的方向始终与线速度方向垂直,在圆周运动中始终指向圆心,方向在不断地变,不是恒量,故匀速圆周运动也不能说是匀变速运动,应是变加速运动,故正确,D错误。
答案2关于做匀速圆周运动物体的向心加速度方向,下列说法正确的是()A与线速度方向始终相同B与线速度方向始终相反始终指向圆心D始终保持不变解析做匀速圆周运动的物体的向心加速度方向始终指向圆心。
答案3(多选)处于北京和广州的物体,都随地球自转而做匀速圆周运动,关于它们的向心加速度的比较,下列说法中正确的是()A它们的方向都沿半径指向地心B它们的方向都在平行赤道的平面内指向地轴北京的向心加速度比广州的向心加速度大D北京的向心加速度比广州的向心加速度小解析如图所示,地球表面各点的向心加速度都在平行赤道的平面内指向地轴,选项B正确,选项A错误。
在地面上纬度为φ的P点,做圆周运动的轨道半径r=R0c φ,其向心加速度=rω2=R0ω2c φ。
由于北京的地纬度比广州的地纬度高,北京的物体随地球自转的半径小,两地的物体随地球自转的角速度相同,因此北京的物体随地球自转的向心加速度比广州的物体小,选项D正确,选项错误。
答案BD题组二有关向心加速度的计算4图为自行车的轮盘与车轴上的飞轮之间的链条传动装置。
P是轮盘的一个齿,Q 是飞轮上的一个齿。
下列说法中正确的是()A P、Q两点的角速度大小相等B P、Q两点的向心加速度大小相等P点的向心加速度小于Q点的向心加速度D P 点的向心加速度大于Q 点的向心加速度解析P 、Q 两点的线速度大小相等,由ω=知,ω∝,ωP <ωQ ,A 错;由=知,∝,P <Q ,对,B 、D 错。
向心加速度
一、选择题(每小题6分,共48分,多选题漏选得3分,错选或多选得0分)
1.(多选)关于匀速圆周运动,下列说法正确的是【】
A.匀速圆周运动是匀速运动
B.匀速圆周运动是匀变速曲线运动
C.物体做匀速圆周运动是变加速曲线运动
D.匀速圆周运动中的“匀速”指的是速率而非速度
2.(多选)质点做匀速圆周的运动时,下列物理量中不变的是【】
A.速度B.角速度 C.向心加速度 D.周期
3.(多选)由于地球的自转,比较位于赤道上的物体1与位于北纬60º的物体2,则下列关系正确的是【】
A.它们的角速度之比ω1:ω2=1:2 B.它们的线速度之比v1: v2=2:1
C.它们的向心加速度之比a1: a2=2:1 D.它们的向心加速度之比a1: a2=4:1 4.(多选)一小球用细绳拴着,在水平面内做半径为r的匀速圆周运动,向心加速度为a,那么【】
A.小球运动的角速度ω=a r
B.小球在时间t内通过的路程为s=ar
C.小球做匀速圆周运动的周期T=r a
D.小球在时间t内可能发生的最大位移为2r
5.(多选)如图所示,有一皮带传动装置,A、B、C三点到各自转轴的距离分别为R A、R B、R C,已知R B= R C=R A/2,若在传动过程中,皮带不打滑。
则【】
A.A点与C点的角速度大小相等
B.A点与C点的线速度大小相等
C.B点与C点的角速度大小之比为2:1
D .B 点与C 点的向心加速度大小之比为1:4
6.无级变速是在变速范围内任意连续地变换速度,性能优于传统的档位变速器。
如图所示是截锥式无级变速模型示意图,两个锥轮中间有一个滚轮,主动轮、滚轮、从动轮之间靠着彼此的摩擦力带动。
当主动轮转速一定时,位于主动轮与从动轮之间的滚轮从左向右移动时,从动轮转速降低;滚轮从右向左移动时,从动轮转速增加。
当滚轮位于主动轮直径D 1,从动轮直径D 2的位置上时,则主动轮转速n 1、从动轮转速n 2之间的关系是【 】
A .1212D D n n =
B .2112D D n n =
C .2
1
12D D n n =
D .2
2
211
2D D n n =
7.右图为质点P 、Q 做匀速圆周运动时的向心加速度随半径变化的图线,表示质点P 的图线是反比例曲线,表示质点Q 的图线是过原点的一条直线,由图可知【 】
A .质点P 点的线速度大小不变
B .质点P 点的角速度大小不变
C .质点Q 的角速度随半径变化
D .质点Q 的线速度大小不变
8.(多选)图中所示为一皮带传动装置,右轮的半径为r ,a是它边缘上的一点。
左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r 。
b点在小轮上,到小轮中心的距离为r 。
c点和d点分别位于小轮和大轮的边缘上。
若在传动过程中,皮带不打
滑,则【 】
A .a点与b点的线速度大小相等
B .a点与b点的角速度大小相等
C .a点与c点的线速度大小相等
D .a点与d点的向心加速度大小相等 二、计算题(共52分)
a
b
c d
4r
r 2r r
9.(26分)如图所示为一辆自行车的局部结构示意图,设连接脚踏板的连杆长为L 1,由脚踏板带动半径为r 1的大轮盘(牙盘),通过链条与半径为r 2的小轮盘(飞轮)连接,小轮盘带动半径为R 的后轮转动,使自行车在水平路面上匀速前进。
设L 1=18 cm ,r 1=12 cm ,r 2=6 cm ,R =30 cm ,为了维持自行车以v =3 m/s 的速度在水平路面上匀速行驶,请你计算一下每分钟要踩踏板几圈。
10.(26分)如图所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无相对滑动,大轮的半径是小轮半径的2倍,大轮上的一点S 离转动轴的距离是大轮半径的1
3 。
当大轮边缘上的P
点的向心加速度是12 cm/s 2
时,大轮上的S 点和小轮边缘上的Q 点的向心加速度各为多少?。