循环伏安法测定电极反应参数数据记录
- 格式:doc
- 大小:74.50 KB
- 文档页数:3
[实验目的]1) 学习固体电极表面的处理方法。
2) 掌握循环伏安仪的使用技术。
3) 了解扫描速率和浓度对循环伏安图的影响。
[实验原理]铁氰化钾离子-亚铁氰化钾离子:])([])([6463CN Fe K CN Fe K ⇔氧化还原电对的标准电极电位:V 36.00=ϕ峰电流方程: 循环伏安法产生氧化电流。
为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。
实验前电极表面要处理干净。
在0.10 mol.L -1 NaCl 溶液中[Fe(CN)6]的扩散系数为0.63×10-5 cm.s -1;电子转移速率大,为可逆体系(1.0 mol.L -1 NaCl 溶液中,25℃时,标准反应速率常数为5.2×10-2 cm 〃s -1)。
[注意事项和问题]1.实验前电极表面要处理干净。
2. 扫描过程保持溶液静止。
3. 若实验中测得的条件电极电位和与文献值有差异,说明其原因。
53/21/21/2p 2.6910i n ACD v =⨯i—E 曲线[实验步骤]1. 指示电极的预处理铂电极用Al 2O 3粉末(粒径0.05 µm)将电极表面抛光,然后用蒸馏水超声清洗3min.。
2.配制溶液配制2⨯10-2、2⨯10-3 、8⨯10-4、2⨯10-4 mol 〃L -1的K 3[Fe(CN)6]溶液。
3. 不同扫描速率K 3[Fe(CN)6]溶液的循环伏安图先对10-3mol〃L -1K 3 [Fe(CN)6]溶液(含支持电解质KNO 3浓度为0.50 mol〃L -1, 通氮气除氧5min )以20mV/s 在+0.8至-0.2V 电位范围内扫描循环伏安图。
再对上述溶液以10、40、60、80、100、200mV/s ,在+0.8至-0.2V 电位范围内扫描,分别记录循环伏安图。
4. 不同浓度K 3[Fe(CN)6]溶液的循环伏安图在10-4、4⨯10-4、10-2 mol〃L -1 K 3[Fe(CN)6]溶液(均含支持电解质KNO 3浓度为0.50 mol〃L -1, 通氮气除氧5min )中,以20mV/s ,在-0.2至+0.8V 电位范围内扫描,分别记录循环伏安图。
循环伏安法判断电极过程实验报告循环伏安法判断电极过程实验报告引言:循环伏安法是一种常用的电化学测试方法,用于研究电极材料的电化学行为。
本实验旨在通过循环伏安法测定电极材料的氧化还原反应特性,并分析实验结果,探讨其在电化学领域的应用前景。
实验材料与方法:实验所用材料为铂电极和铜电极,实验仪器为循环伏安仪。
首先,将铂电极和铜电极分别清洗并抛光,以确保电极表面的纯净度和光滑度。
然后,将电极插入电解质溶液中,并设置循环伏安仪的扫描速度和电位范围。
接下来,进行循环伏安法测试,记录电流与电位之间的关系曲线。
实验结果与分析:通过循环伏安法测试,我们得到了铂电极和铜电极的电流-电位曲线。
根据曲线的形状和特点,我们可以得到以下结论和分析:1. 铂电极的电流-电位曲线呈现出典型的双电极峰形状,其中一个峰对应氧化反应,另一个峰对应还原反应。
这说明铂电极在测试条件下发生了氧化还原反应,具有良好的电化学活性。
这一特性使得铂电极在催化剂、电池等领域有着广泛的应用前景。
2. 铜电极的电流-电位曲线呈现出单峰形状,没有出现双电极峰。
这说明铜电极在测试条件下只发生了一种氧化还原反应,具有较低的电化学活性。
然而,铜电极在电化学合成、电镀等领域仍然有着重要的应用,其特殊的电化学行为可以被利用。
3. 通过对电流-电位曲线的分析,我们可以得到电极反应的动力学参数,如峰电位、峰电流等。
这些参数可以进一步用于计算电极的表面积、电荷转移速率等重要参数,为电极材料的性能评价提供参考。
结论:本实验通过循环伏安法测试了铂电极和铜电极的电流-电位曲线,并对实验结果进行了分析。
通过曲线的形状和特征,我们可以了解电极材料的氧化还原反应特性和电化学活性。
这对于电化学领域的研究和应用具有重要意义。
循环伏安法作为一种常用的电化学测试方法,具有广泛的应用前景,可以用于研究各种电极材料的性能,并为相关领域的发展提供支持。
总结:循环伏安法是一种重要的电化学测试方法,通过测定电流-电位曲线,可以研究电极材料的氧化还原反应特性和电化学活性。
实验三十四循环伏安法测定铁氰化钾的电极反应过程一、实验目的见《仪器分析实验》p123二、方法原理见《仪器分析实验》p123。
三、仪器和试剂1.JP—303型极谱分析仪2.铁氰化钾标准溶液:5.0×10-2mol/L3.氯化钾溶液:1.0mol/L四、实验步骤1.铁氰化钾试液的配置准确移取1.0mL5.0×10-2mol/L的铁氰化钾标准溶液于10mL的小烧杯中,加入1.0 mol/L 的氯化钾溶液5.0mL,再加蒸溜水4.0mL。
2.测量手续(1)打开303极谱仪的电源。
屏幕显示清晰后,输入当天的日期:××.××.××,按【INT】键。
(2)屏幕显示“运行方式”菜单后,选取“使用当前方法”项,按【YES】键。
屏幕将显示“线性循环伏安法”的方法参数菜单:导数(0~2)0量程(10e nA,e=1~4) 4扫描次数(1~8) 4扫描速率(50~1000mV/s)50起始电位(-4000~4000mV)-100终止电位(-4000~4000mV)600静止时间(0~999s)0如果显示的参数不符合,请按提示修改。
(3)测量铁氰化钾试液在教师指导下,置电极系统于10mL小烧杯的铁氰化钾试液里。
按【运行】键,运行自动完成后,“波高基准”项闪烁,用∧∨键确定“前谷”方法处理图谱,按【YES】键。
请记录波峰电位和波峰电流数据。
按两次【退回】键,再按【方法】键,选取“使用当前方法”项,按【YES】键,显示“线性循环伏安法”的方法参数菜单。
修改扫描速率为100mV,按【ENT】键。
再按【运行】键,照上述的过程一样进行测量。
直至完成扫描速率为50、100、150、200、250mV/s的测量。
上述的循环伏安图打印样本见附图。
五、结果处理见《仪器分析实验》p127五的1、3、5题。
六、问题讨论见《仪器分析实验》p128六的2题。
实验10 循环伏安法测定电极反应参数一、实验目的(1)了解循环伏安法的基本原理、特点和应用。
(2)掌握循环伏安法的实验技术和有关参数的测定方法。
二、实验原理(1)循环伏安法是电化学分析中重要的一种分析方法。
在电化学分析中,凡是以测量电解过程的电流-电位(电压)曲线为目的,都称为伏安分析法。
按施加激励信号的方式、波形及种类的不同,伏安法又分为多种技术,其中线性扫描伏安法,是在工作电极和对电极上施加一随时间线性变化的直流电压(图1),并记录相应的电流-电势曲线(图2)。
线性电位扫描法分小幅度运用和大幅度运用两类。
小幅度运用一般用于测定双电层电容和反应电阻。
大幅度运用的电位扫描范围宽,可在感兴趣的整个范围进行,所以使用的范围较广,如测定电极参数,判断电极过程的可逆性/控制步骤/反应机理,研究电极的吸(脱)附现象等。
图1 图2循环伏安法就是将线性扫描电位扫到某电位E m后,再回扫至原来的起始电位值E i,电位与时间的关系如图3所示。
电压扫描速度可从每秒毫伏到伏量级。
所用的指示电极有悬汞电极、铂电极或玻璃碳电极等。
主要用于研究电极反应的性质、机理和电极过程动力学参数等。
图3 图4当溶液中存在氧化态物质O 时,它在电极上可逆地还原生成还原态物质R ,O + ne → R当电位方向逆转时,在电极表面生成的R 则被可逆地氧化为O,R → O + ne一个三角波扫描,可以完成还原与氧化两个过程,记录出如图4所示的循环伏安曲线。
在循环伏安法中,阳极峰电流i P a 、阴极峰电流i P c 、阳极峰电位E pa 、阴极峰电位E P c 是最重要的参数,对可逆电极过程来说, 峰电位不随扫描速度变化,且 5763E E E mV n∆=pa pc -= (1) 即阳极峰电势(E pa )与阴极峰电势(E pc )之差为57/n 至63/n mV 之间,确切的值与扫描过阴极峰电势之后多少毫伏再回扫有关。
一般在过阴极峰电势之后有足够的毫伏数再回扫,△E P 值为58/n mV 。
三电化学实验循环伏安法测定铁氰化钾的电极反应过程及定量分析【实验目的】了解CHI660电化学工作站的基本操作。
掌握循环伏安方法的基本原理和实验技术。
了解循环伏安法的基本应用。
【原理】图1:三角波扫描电位图2:循环伏安曲线循环伏安法是在固定面积的工作电极和参比电极之间加上对称的三角波扫描电压,记录工作电极上得到的电流与施加电位的关系曲线,即循环伏安图,见图1。
在三角波的前半部分,工作电极上如发生氧化反应(阳极过程),记录到一个峰形的阳极波;而在三角波的后半部分,工作电极上发生则发生的是还原过程(阴极过程),记录得到一个峰形的还原波。
一次三角波电位扫描完成,电极上完成了一个氧化还原循环。
从循环伏安图的波形,阴阳极峰的峰电流的数值和比值,阴阳极峰的峰电位数值可判断电极反应的机理。
电极反应的可逆性主要取决于电极反应的速率常数k s 的大小,也与电位扫描的速率有关。
可逆性判据【仪器和试剂】1. CHI 660A 电化学系统,玻碳电极(d = 3mm )为工作电极,Ag/AgCl 电极为参i —E 曲线比电极,铂丝电极为辅助电极;2. 固体铁氰化钾、氯化钾;3. 250 mL 容量瓶、50 mL 烧杯、玻璃棒。
【实验步骤】1.铁氰化钾试液的配置配置1 mM的铁氰化钾溶液250 mL (1.0 M)。
2.将玻碳电极在抛光布上用氧化铝粉抛光,并用蒸馏水冲洗净。
3. 将三个电极安装于盛有铁氰化钾试液的电解池里。
4.开启电化学系统及计算机电源开关,启动CHI660操作程序,在Setup下拉菜单中(或快捷方式中)选择“Technique”,然后在“Technique”菜单选择“Cyclic V oltammetry”,按“OK”键返回主菜单,然后在“Parameters”菜单下选择参数。
Init E(V)-0.2High E(V)0.5Low E(V)-0.2Scan rate(V/s)xSweep Segments 2Quiet Time (sec) 2Sensitivity (A/V)按“OK”。
循环伏安法测定电极反应一、实验目的1、学习循环伏安法测定电极反应的基本原理和方法。
2、熟悉电化学工作站的使用并根据所测数据验证并判断电极反应是否是可逆反应。
二、实验原理伏安分析法是在一定电位下测量体系的电流,得到伏安特性曲线。
根据伏安特性曲线进行定性定量分析。
循环伏安法是将对称的三角波扫描电压(如图一)施加于电解池的电极上,记录工作电极上的电流随电压变化的曲线。
在三角波的前半部分,电极上若发生还原反应(阴极过程),得到一个峰形的阴极波;而在三角波的后半部分,则得到一个峰形的阳极波。
一次三角波电压扫描,电极上完成一个氧化还原循环。
当工作电极被施加的扫描电压激发时,其上将产生响应电流。
以该电流(纵坐标)对电位(横坐标)做图,就得到了循环伏安图(如图二所示)。
图一图二E pc、E pa分别为阴极峰值电位与阳极峰值电位。
i pc、i pa分别为阴极峰值电流与阳极峰值电流。
这里p代表峰值,a代表阳极,c代表阴极。
[Fe(CN)6]3--[Fe(CN)6]4-体系氧化还原电对的标准电极电位为:[Fe(CN)6]3- + e- = [Fe(CN)6]4-φθ= 0.36V电极电位与电极表面活度的Nernst方程式为:φ=φθ+ nRT/Fln(αOx/αRed)。
若已知γ为活度系数,则αOx=γ•C Ox,αRed=γ•C Red。
在实验中,通常采用添加离子调节液(如KNO3溶液、Na2SO4溶液等)的方法来固定离子强度,此时γ可视为定值,则φ=φθ+ nRT/Fln(C Ox/C Red)。
用循环伏安法正扫时(由正向负的扫描)为阴极扫描,产生还原电流:Fe(CN)63- + e- = Fe(CN)64-反扫时(由负向正的扫描)为阳极扫描,产生氧化电流:Fe(CN)64- - e- = Fe(CN)63-两峰之间的电位差值为:(1)对于一个体系,循环伏安图中的阴极峰电流是由电极上吸附反应物的还原和溶液中反应物扩散到电极表面还原两部分组成。
图0 CV扫描电流响应曲线图2所示CV扫描结果为研究电极上产生的电流随扫描速率的变化及电位变化情况图。
1)横坐标E(电位)为图1中电压表(电化学工作站)所测,即E=P(WE)-P(RE)所有的电位数值都是相对于氢离子的电位值,规定在标准情况下,氢离子的电位为0。
当恒电位仪向工作电极提供负的电位时,其电源连接情况如图1所示,即工作电极与电源的负极相连,作为阴极工作发生还原反应;反之则作为阳极发生氧化反应。
2)纵坐标所示电流为工作电极上通过的电流,电流为正(流出电极表面)则有电子流入电极槲皮素失电子发生氧化反应;电流为负则电子流出电极,槲皮素得电子发生还原反应。
各伏安峰的峰电流随扫速的加快而增大,阴极峰与阳极峰电流之比与扫速关系不大。
3)数据分析电压从负到正可以看作是正扫为阳极氧化过程,对应氧化峰;反之为负扫阴极还原过程,对应还原峰。
阴极反应的电流称为阴极电流,对应还原峰;阳极反应的电流称为阳极电流,对应氧化峰。
一般国内规定阴极电流用正值阳极用负值,国外很多文献反之。
通常,氧化峰位于较正的电位而还原峰位于较负的电位,这是极化作用的结果。
1)还原峰(向上的峰)峰电位越正峰电流越大,越容易还原;氧化峰(向下的峰)峰电位越负,峰电流越大,越容易氧化。
2)判断电极反应的可逆程度I pa=I pc(I pa,I pc正比于V1/2)φpa-φpc≈60 mV (25℃条件下)3)标准电极电位等于两个峰电位之和的1/2 即Eθ=(E pa+E pc)/24)扫描速度:在CV测试中,扫描速度对峰电位没有影响,但扫速加快有利于增大峰电流强度。
5)峰电位:多圈扫描发生峰电位偏移,反应可逆性差。
6)活化能计算:电化学方法计算活化能一般使用不同温度下循环伏安扫描曲线来实现,温度与活化能的关系为:Lnj=const-Ea/RT其中j——某一电位下的电流密度,等于该点位下的电流除以电极表面积;R——理想气体常数,R=8.314;T——绝对温度。
实验⼆-循环伏安法测定电极反应参数循环伏安法测定电极反应参数⼀、⽬的要求1.学习循环伏安法测定电极反应参数的基本原理及⽅法。
2.熟悉伏安仪使⽤技巧。
⼆、实验原理循环伏安法(CV)是最重要的电分析化学研究⽅法之⼀。
在电化学、⽆机化学、有机化学、⽣物化学等研究领域得到了⼴泛应⽤。
由于其设备价廉、操作简便、图谱解析直观,因⽽⼀般是电分析化学的⾸选⽅法。
CV⽅法是将循环变化的电压施加于⼯作电极和参⽐电极之间,记录⼯作电极上得到的电流与施加电压的关系曲线。
这种⽅法也常称为三⾓波线性电位扫描⽅法。
图1中表明了施加电压的变化⽅式:起扫电位为+0.8V,反向/起扫电位为-0.2V,终点⼜回扫到+0.8V,扫描速度可从斜率反映出来,其值为50mV/s。
虚线表⽰的是第⼆次循环。
⼀台现代伏安仪具有多种功能,可⽅便地进⾏⼀次或多次循环,任意变换扫描电压范围和扫描速度。
当⼯作电极被施加的扫描电压激发时,其上将产⽣响应电流。
以该电流(纵坐标)对电位(横坐标)作图,称为循环伏安图。
典型的循环伏安图如图2所⽰。
该图是在1.0mol/L的KNO3电解质溶液中,6×10-3mol/L 的K3Fe(CN)6在Pt⼯作电极上反应得到的结果。
图 2 6×10–3 mol/L在1 mol/L的KNO3溶液中的循环伏安图扫描速度:50 mV/s 铂电极⾯积:2.54 mm2从图可见,起始电位E i为+0.8V(a点),电位⽐较正的⽬的是为了避免电极接通后Fe(CN)63–发⽣电解。
然后沿负的电位扫描(如箭头所指⽅向),当电位⾄Fe(CN)63–可还原时,即析出电位,将产⽣阴极电流(b点)。
其电极反应为:Fe(III)(CN)63– + e–——?Fe(II)(CN)64–随着电位的变负,阴极电流迅速增加(b g d),直⾄电极表⾯的Fe(CN)63-浓度趋近零,电流在d点达到最⾼峰。
然后迅速衰减(d g g),这是因为电极表⾯附近溶液中的Fe(CN)63-⼏乎全部因电解转变为Fe(CN)64-⽽耗尽,即所谓的贫乏效应。
(新)实验四循环伏安法测定亚铁氰化钾的电极反应过程循环伏安法测定亚铁氰化钾的电极反应过程⼀、实验⽬的(1) 学习固体电极表⾯的处理⽅法; (2) 掌握循环伏安仪的使⽤技术;(3) 了解扫描速率和浓度对循环伏安图的影响⼆、实验原理铁氰化钾离⼦[Fe(CN)6]3--亚铁氰化钾离⼦[Fe(CN)6]4-氧化还原电对的标准电极电位为[Fe(CN)6]3- + e -= [Fe(CN)6]4- φθ= 0.36V(vs.NHE) 电极电位与电极表⾯活度的Nernst ⽅程式为φ=φθ+ RT/Fln(C Ox /C Red )-0.20.00.20.40.60.8-0.0005-0.0004-0.0003-0.0002-0.00010.00000.00010.00020.0003i pai pcI /m AE /V vs.Hg 2Cl 2/Hg,Cl-在⼀定扫描速率下,从起始电位(-0.20V)正向扫描到转折电位(0.80 V)期间,溶液中[Fe(CN)6]4-被氧化⽣成[Fe(CN)6]3-,产⽣氧化电流;当负向扫描从转折电位(0.80V)变到原起始电位(-0.20V)期间,在指⽰电极表⾯⽣成的[Fe(CN)6]3-被还原⽣成[Fe(CN)6]4-,产⽣还原电流。
为了使液相传质过程只受扩散控制,应在加⼊电解质和溶液处于静⽌下进⾏电解。
在0.1MNaCl 溶液中[Fe(CN) 6]4-]的扩散系数为0.63×10-5cm.s -1;电⼦转移速率⼤,为可逆体系(1MNaCl 溶液中,25℃时,标准反应速率常数为5.2×10-2cm·s -1)。
溶液中的溶解氧具有电活性,⽤通⼊惰性⽓体除去。
三、仪器与试剂MEC-16多功能电化学分析仪(配有电脑机打印机);玻碳圆盘电极(表⾯积0.025 cm 2)或铂柱电极;铂丝电极;饱和⽢汞电极;超声波清洗仪;电解池;氮⽓钢瓶。
容量瓶:250 mL 、100mL 各2个,25 mL 7个。
循环伏安法测定电极反应参数一目的要求1掌握用循环伏安法判断电极过程的可逆性。
2学会使用循环伏安仪。
3测量峰电流和峰电位。
二原理循环伏安法与单扫描极谱法相似。
在电极上施加线形扫描电压,当到达某设定的终止电压后,再反向回扫至某设定的起始电压,若溶液中存在氧化态O,电极上将发生还原反应:O+Ze == R反向回扫时,电极上生成的还原态R将发生氧化反应:R == O+Ze峰电流可表示为:ip=KZ3/2D1/2m2/3t2/3v1/2c其峰电流与被测物质浓度C、扫描速率v等因素有关。
从循环伏安图可确定氧化峰峰电流ipa 和还原峰峰电流ipc,氧化峰峰电位φpa 和还原峰峰电位φpc值。
对于可逆体系,氧化峰峰电流与还原峰峰电流比:1=pcpaii氧化峰峰电位与还原峰峰电位差:)(058.0Vzpcpa=-=∆ϕϕϕ条件电位φo’:2pcpaOϕϕϕ+='由此可判断电极过程的可逆性。
三仪器与试剂仪器 CHI660C 电化学工作站;x-y函数记录仪器;金属盘电极、铂圆盘电极或玻璃碳电极,铂丝电极和饱和甘汞电极。
试剂 1.00×10-2mol/L K3Fe(CN)6;1.0mol/L KNO3。
四实验步骤1金属圆盘电极(或铂圆盘电极、玻璃碳电极)的预处理。
用Al2O3粉(或牙膏)将电极表面抛光(或用抛光机处理),然后用蒸馏水清洗,待用。
也可用超声波处理。
2 K3Fe(CN)6溶液的循环伏安图在电解池中放入含0.1mol/LKNO3的铁氰化钾标准溶液,插入玻碳圆盘电极(或金圆盘)工作电极、铂丝辅助电极和饱和甘汞电极,通N2除O2。
打开CHI660C伏安仪和计算机的电源。
屏幕显示清楚后,再打开测量窗口;测量铁氰化钾试液:置电极系统于10ml小烧杯的铁氰化钾试液里;打开ESTUP 的下拉菜单,在Technique项中选择Cyclic voltammetry方法,在Parameters 项内选择参数。