k=5 时,β=5×360°-1 910°=-110°;
k=6 时,β=6×360°-1 910°=250°.
规律方法
1.在 0°到 360°范围内找与给定角终边相同的角的方法
(1)一般地,可以将所给的角 α 化成 k·360°+β 的形式(其中 0°≤β<
360°,k∈Z),其中的 β 就是所求的角.
我们还知道如下一些特殊角的正弦、余弦、正切、余切值
(表6-1):
(表6-1)
角度
30
45
60
sin
cos
1
2
3
2
2
2
3
2
2
2
1
2
ta n
cot
3
3
3
1
3
1
3
3
2 任意角及其度量
在小学和初中我们已经知道,角是具有公共端点的两条射线所组成的图形,
角还可以看作是平面上由一条射线绕着其端点从初始位置(始边)旋转到终
45 是第一象限的角,
-315 是第一象限的角;
(2) 905.3 =2 360 +184.7 ,
184.7 是第三象限的角,
905.3 是第三象限的角;
(3)
-1090 4 ( 360 ) 350 , 350 是第四象限的角
-1090 是第四象限的角
(4) 530 =360 +170 ,
止位置(终边)所形成的图形(图6-1-2). 我们以前学习过的锐角、直角、
钝角、平角和周角,其大小都在0°到360°之间.不过在体操、跳水等体育
运动中,会听到转体720°、转体1080°等术语;当手表比标准时间慢或者