空间图形(棱柱,棱锥,棱台)
- 格式:ppt
- 大小:1.89 MB
- 文档页数:18
棱柱棱台棱锥知识点总结一、棱柱的定义和性质1. 棱柱的定义:棱柱是一个多边形和一个平行于它的平面所围成的几何图形。
2. 棱柱的特征:(1)棱柱的底面是一个多边形,顶面与底面平行,并且顶面的每个点和底面的对应点之间的连线都垂直于底面。
(2)如果底面是正多边形,棱柱就称为正棱柱;如果底面是不规则多边形,棱柱就称为斜棱柱。
(3)棱柱的高等于顶面到底面的距离,底面的面积乘以高就是棱柱的体积。
二、棱台的定义和性质1. 棱台的定义:棱台是由平行多边形和连通它们的矩形棱所围成的空间图形。
2. 棱台的特征:(1)如果底面和顶面都是正多边形,且它们的对边平行,那么这个棱台称为正棱台;如果底面和顶面是正多边形,但它们不一定平行,那么这个棱台称为斜棱台。
(2)棱台的体积等于底面积与高的乘积,而斜棱台的体积还需要乘以一个高与底面中较大边的比值。
三、棱锥的定义和性质1. 棱锥的定义:棱锥是由一个多边形和以它为底的三棱锥棱所围成的几何图形。
2. 棱锥的特征:(1)如果底面是正多边形,棱锥称为正棱锥;如果底面不是正多边形,那么棱锥就称为斜棱锥。
(2)棱锥的体积等于底面积与高的乘积,并除以3。
(3)棱锥的侧棱的延长线与底面平面的交点称为顶点。
四、棱柱、棱台、棱锥的计算公式1. 棱柱的体积公式:V=Sh,其中V表示棱柱的体积,S表示底面的面积,h表示高。
2. 棱台的体积公式:V=(S1+S2+√S1S2)h/3,其中V表示棱台的体积,S1和S2表示底面和顶面的面积,h表示高。
3. 棱锥的体积公式:V=Sh/3,其中V表示棱锥的体积,S表示底面的面积,h表示高。
以上就是关于棱柱、棱台、棱锥的知识点总结,希望对你有所帮助。
如果还有其他问题,欢迎继续提问。
棱柱、棱锥和棱台知识点一 棱柱思考以下几何体是有什么共同特点,是怎样形成的?(1) (2) (3) (4)1、概念:一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱.2、元素:底面:平移起止位置的两个面叫做棱柱的底面.侧面:多边形的边平移所形成的面叫做棱柱的侧面.侧棱:相邻两侧面的公共边叫做棱柱的侧棱.3、性质:(1)两个底面是全等的多边形,且对应边互相平行 (2)侧面都是平行四边形.(3)所有侧棱平行且相等。
不具以上条件的多面体便不是棱柱,如图:4、表示:图(1)三棱柱'''C B A ABC -;图(4)六棱柱''''''F E D C B A ABCDEF -5、分类:(1)按底面的边数分:底面是三角形、四边形、五边形……的棱柱称为三棱柱、四棱柱、五棱柱……。
即底面是几边形就为几棱柱.(2)按侧面是否与底面垂直分:不垂直的叫做斜棱柱,垂直的叫做直棱柱。
底面是正多边形的直棱柱叫做正棱柱。
例如正方体就是正四棱柱。
(3)特殊棱柱侧棱与底面不垂直的棱柱叫做 ,侧棱与底面垂直的棱柱叫做 。
底面是正多边形的直棱柱叫做 。
底面是平行四边形的棱柱叫做 ,侧棱与底面垂直的平行六面体叫做 底面是矩形的直平行六面体是 ,棱长都相等的长方体是 。
例1、下列命题中不正确的是( B )A .直棱柱的侧棱就是直棱柱的高B .有一个侧面是矩形的棱柱是直棱柱C .直棱柱的侧面是矩形D .有一条侧棱垂直于底面的棱柱是直棱柱例2、设有三个命题(1)底面是平行四边形的四棱柱是平行六面体(2)底面是矩形的平行六面体是长方体 (3)直四棱柱是直平行六面体 以上命题中正确的有 (1)例3、长方体交与同一顶点的三条棱长分别为3,4,5,求长方体的对角线的长。
例4、在棱柱中( )A 只有两个面平行B 所有的棱都相等C 所有的面都是平行四边行D 两底面平行,且各侧棱也平行例5、判断下列说法是否正确(1)棱柱的各个侧面都是平行四边形。
初中数学知识归纳棱柱棱锥和棱台的性质与计算初中数学知识归纳:棱柱、棱锥和棱台的性质与计算在初中数学中,我们学习了许多图形的性质与计算方法,其中包括了棱柱、棱锥和棱台。
这些几何图形在我们的生活中随处可见,掌握它们的性质与计算方法对我们理解空间几何关系非常重要。
本文将就棱柱、棱锥和棱台的性质与计算进行归纳总结。
一、棱柱的性质与计算方法棱柱是一个具有两个并列相等的多边形底面,并由这些底面上的边和垂直于底面的侧面边组成的一类立体图形。
下面我们来归纳棱柱的性质与计算方法。
1. 底面性质:棱柱的底面是一个多边形,根据底面的形状可以称为正棱柱、长方体等。
正棱柱的底面是一个正多边形,而长方体的底面是一个矩形。
2. 侧面性质:棱柱的侧面是由底面对应边相连而形成的矩形或平行四边形。
这些侧面相互平行且等大,与底面垂直。
3. 高度与体积:棱柱的高度是底面上某个点到另一个底面上对应点的垂直距离。
设棱柱的底面积为S,高度为h,则棱柱的体积V等于底面积乘以高度,即V=S×h。
4. 表面积:棱柱的表面积等于底面积与侧面积之和。
底面积等于底面的面积,侧面积等于所有侧面的面积之和。
二、棱锥的性质与计算方法棱锥是一个具有一个多边形底面和以底面上的点为顶点的若干个三角形侧面组成的立体图形。
下面我们来归纳棱锥的性质与计算方法。
1. 底面性质:棱锥的底面是一个多边形,形状可以是正多边形或其他类型的多边形。
2. 侧面性质:棱锥的侧面是以任意底面顶点为顶点,连接底面顶点与其它底面边上点的三角形。
3. 高度与体积:棱锥的高度是底面上某个点到顶点的垂直距离。
设棱锥的底面积为S,高度为h,则棱锥的体积V等于底面积乘以高度再除以3,即V=(S×h)/3。
4. 表面积:棱锥的表面积等于底面积与侧面积之和。
底面积等于底面的面积,侧面积等于所有侧面的面积之和。
三、棱台的性质与计算方法棱台是一个具有两个底面为多边形的立体图形,两个底面之间的侧面为梯形或其他类型的多边形。
1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球知识梳理1.棱柱和圆柱统称为柱体.(1)棱柱的本质特征:①有两个面(所在平面)互相平行;②其余各面中每相邻两个面的公共边互相平行.(2)棱柱的性质:①棱的性质:侧棱都平行,并且长度都相等.②面的性质:侧面是平行四边形;两个底面平行,是全等多边形.平行于底面的截面与底面全等.(3)圆柱的特征:①有两个底面互相平行,且为形状、大小一样的圆;②侧面为曲面,展开为矩形.2.棱锥和圆锥统称为锥体.(1)棱锥的本质特征:①有一个面是多边形;②其余各面都是有一个公共顶点的三角形.(2)圆锥的特征:①只有一个顶点,只有一个底面为圆面;②侧面为曲面,展开为扇形.3.棱台和圆台统称为台体.(1)棱台的性质:①棱的性质:侧棱延长之后,必相交于一点.②面的性质:侧面是梯形;两个底面平行,是全等的多边形.(2)圆台的性质:①上下底面平行,为半径不等的圆形;②侧面展开图为一个扇环.4.(1)球面可以看作空间中到一个定点的距离等于定长的点的集合.(2)球的性质:球被任意一个平面所截得的截面是一个圆面.知识导学本节知识是从生活实际中引申出来的,所以,在学习这一部分之前可以先制作一些模型,观察这些模型,进行总结,得出相应的结论,然后根据结论对照图形,加深对几何体性质的理解.对于柱、锥、台体的形状特征可以利用下列口诀加以记忆:底面平行又全等,可能圆柱或棱柱;棱锥圆锥摘掉帽,一个台体就出炉.对于台体的有关问题,可以结合锥体的性质解决,而不要把台体和锥体独立起来,有时候把台体补成一个锥体可以在锥体中进行计算.而面积较小的平面可以看成与锥体的一个与底面平行的截面,根据它们之间的相似比计算其中的元素,这是常用的处理方法.四棱柱是最常见的一种棱柱,包括长方体与正方体,它们都是四棱柱的一种特殊情形.要注意特殊四棱柱的特殊性质及它们之间的联系.球是平面图形圆在空间的延伸,因此在研究球的性质时,应注意与圆的性质的类比.球又是旋转体,由于旋转体是轴对称几何体,故解题时常利用它的轴截面图形,从而化空间问题为平面问题.熟练掌握大圆的半径、截面圆半径以及球心到截面圆圆心的距离的关系是解决有关球问题的关键.疑难突破1.怎样解决与球有关的接、切问题?剖析:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题解决,这类截面通常指球的大圆、多面体的对角面等,在这个截面中应包括几何体的主要元素,且这个截面必须能反映出各元素之间的关系.2.锥体和台体之间的联系.剖析:锥体和台体既有联系又有区别,台体可以看成锥体截掉一个小锥体后的几何体,是锥体的一部分,故可以把两种几何体的关系互相转化.锥体和台体是两种不同的几何体,它们的体积及表面积等的计算方法不同,各个面的形状也不一样,但是它们之间也是有联系的:台体是由锥体截得的,可以看成锥体的一部分,而不能理解成是把柱体的一个面的面积变小.只有通过和锥体的关系才能理解棱台侧棱的延长线相交于一点这一性质.根据锥体和台体的这一性质,在求与台体有关的问题时可以把它补成一个锥体,如用一个平行于底面的截面截掉一个小棱锥得棱台,而这个截面与底面是相似的平面图形,其面积的比等于对应高的平方比,根据这一关系可以解决很多与棱台有关的问题.。
总结棱锥棱柱棱台1.介绍棱锥、棱柱和棱台是几何学中的常见立体图形,也是三维空间中具有特定特征和性质的几何体。
本文将对棱锥、棱柱和棱台进行简要的介绍,并总结它们的特征和性质。
2.棱锥棱锥是一种以一个多边形为底面,其余各边都连接到一个共同的点的几何体。
根据底面的形状,棱锥可以分为正棱锥和斜棱锥。
2.1 正棱锥正棱锥的底面是一个正多边形,且棱和顶点都位于正多边形所在的平面上。
正棱锥的侧面都是三角形,且棱相等。
2.2 斜棱锥斜棱锥的底面是一个普通多边形或者不规则多边形,且棱和顶点不在同一个平面上。
斜棱锥的侧面可以是三角形、四边形或更多边形,棱的长度可以不相等。
3.棱柱棱柱是一种以一个多边形为底面,其余各边都垂直于底面的几何体。
根据底面的形状,棱柱可以分为正棱柱和斜棱柱。
3.1 正棱柱正棱柱的底面是一个正多边形,且底面和顶面平行。
正棱柱的侧面都是矩形,且棱相等。
3.2 斜棱柱斜棱柱的底面是一个普通多边形或不规则多边形,底面和顶面不平行。
斜棱柱的侧面可以是矩形、平行四边形或更多边形,棱的长度可以不相等。
4.棱台棱台是一种由两个平行多边形和连接两个多边形相邻顶点的侧面组成的几何体。
棱台的顶面和底面平行,且侧面是由两个相同或不同的多边形所组成。
根据底面的形状和侧面的形状以及多边形之间的关系,棱台可以分为正棱台、斜棱台、直棱台和斜直棱台等多种类型。
4.1 正棱台正棱台的顶面和底面是相同的正多边形,侧面是由直线与多边形形成的三角形,且棱相等。
4.2 斜棱台斜棱台的顶面和底面是不相等的普通多边形,侧面可以是三角形、四边形或更多边形,棱的长度可以不相等。
4.3 直棱台直棱台的侧面都是矩形,其余性质与斜棱台相似。
4.4 斜直棱台斜直棱台的侧面可以是矩形、平行四边形或更多边形,棱的长度可以不相等。
5. 总结棱锥、棱柱和棱台是几何学中的重要概念和几何体。
通过对它们的分类和特征的总结,我们可以更好地理解它们的性质和特点。
了解这些特征和性质对于解决与这些几何体相关的问题和计算体积、表面积等都有很大的帮助。
棱柱棱锥棱台的表面积和体积公式棱柱、棱锥和棱台是几何学中常见的三种立体图形,它们都具有特定的表面积和体积公式。
本文将分别介绍棱柱、棱锥和棱台的表面积和体积公式,并对其应用进行讨论。
一、棱柱的表面积和体积公式棱柱是一种具有两个平行且相等的底面,底面之间的连接线段都垂直于底面的立体图形。
棱柱的表面积公式为:S = 2B + L,体积公式为:V = Bh。
其中,B表示底面积,L表示侧面积,h表示高度。
由于棱柱的底面是一个多边形,所以底面积的计算方法取决于底面的形状。
常见的底面形状有正多边形、矩形和圆形。
以正多边形为例,当底面是正n边形时,底面积的计算公式为:B = n * a * a / (4 * tan(π / n)),其中a表示边长,n表示边的个数。
侧面积的计算公式为:L = p * h,其中p表示正多边形的周长。
以矩形为例,当底面是矩形时,底面积的计算公式为:B = l * w,其中l表示矩形的长,w表示矩形的宽。
侧面积的计算公式同样为:L = p * h,其中p表示矩形的周长。
以圆形为例,当底面是圆形时,底面积的计算公式为:B = π * r * r,其中r表示圆的半径。
侧面积的计算公式为:L = 2 * π * r * h,其中h表示高度。
二、棱锥的表面积和体积公式棱锥是一种具有一个底面和侧面的立体图形,底面是一个多边形,侧面连接底面和顶点。
棱锥的表面积公式为:S = B + L,体积公式为:V = (1/3) * B * h。
与棱柱类似,棱锥的底面积的计算方法取决于底面的形状。
侧面积的计算公式为:L = (1/2) * p * l,其中p表示底面的周长,l表示侧面的斜高。
三、棱台的表面积和体积公式棱台是一种具有两个底面和侧面的立体图形,底面形状相等且平行,侧面连接两个底面。
棱台的表面积公式为:S = B1 + B2 + L,体积公式为:V = (1/3) * (B1 + B2 + √(B1 * B2)) * h。