相 关 概 念
上底面:原棱锥的截面; 下底面:原棱锥的底面; 侧面:其余各面; 侧棱:相邻侧面的公共边; 顶点:侧面与上(下)底面的公共顶点
分 类
①依据:由几棱锥截得; ②举例:三棱台(由三棱锥截得)、四棱台 (由四棱锥截得)……
如图棱台可记 作:棱台 ABCD-A'B'C'D'
4.做一做:下列几何体中,
棱柱、棱锥、棱台的结构特征
一、空间几何体的定义、分类及相关概念 【问题思考】 1.观察下面两组物体,你能说出各组物体的共同点吗?
(1)
(2)
提示:(1)几何体的表面由若干个平面多边形组成. (2)几何体的表面可由平面图形绕其所在平面内的一条定直线旋 转而成.
2.如图,观察几何体,它有几个面?几个顶点?几条棱?有没有比它 的面、顶点、棱更少的几何体?
多面体的表面展开与折叠 【例2】 如图是三个几何体的表面展开图,请问它们是什么几何 体?
思路分析:几何体的侧面展开图的特点→紧扣概念→还原为原几 何体
解:①五棱柱;②五棱锥;③三棱台.如图所示.
反思感悟1.解答此类问题要结合多面体的结构特征发挥空间想 象能力和动手能力.
2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先 把多面体的底面画出来,再依次画出各侧面.
提示:4个面,4个顶点,6条棱.没有比它的面、顶点、棱更少的几 何体.
3.填空: 空间几何体的定义及分类 (1)定义:如果只考虑物体的形状和大小,而不考虑其他因素,那么 由这些物体抽象出来的空间图形叫做空间几何体. (2)分类:常见的空间几何体有多面体与旋转体两类.
4.填写下表: 类别 多面体
定义
答案:①③④⑤
防范措施在解答关于空间几何体概念的判断题时,要注意紧扣定 义,切忌只凭图形主观臆断.同时立体几何问题中也要注意分类讨 论思想的应用,否则就会因审题片面而出错.