棱柱、棱锥、棱台
- 格式:doc
- 大小:63.50 KB
- 文档页数:4
棱柱棱台棱锥知识点总结一、棱柱的定义和性质1. 棱柱的定义:棱柱是一个多边形和一个平行于它的平面所围成的几何图形。
2. 棱柱的特征:(1)棱柱的底面是一个多边形,顶面与底面平行,并且顶面的每个点和底面的对应点之间的连线都垂直于底面。
(2)如果底面是正多边形,棱柱就称为正棱柱;如果底面是不规则多边形,棱柱就称为斜棱柱。
(3)棱柱的高等于顶面到底面的距离,底面的面积乘以高就是棱柱的体积。
二、棱台的定义和性质1. 棱台的定义:棱台是由平行多边形和连通它们的矩形棱所围成的空间图形。
2. 棱台的特征:(1)如果底面和顶面都是正多边形,且它们的对边平行,那么这个棱台称为正棱台;如果底面和顶面是正多边形,但它们不一定平行,那么这个棱台称为斜棱台。
(2)棱台的体积等于底面积与高的乘积,而斜棱台的体积还需要乘以一个高与底面中较大边的比值。
三、棱锥的定义和性质1. 棱锥的定义:棱锥是由一个多边形和以它为底的三棱锥棱所围成的几何图形。
2. 棱锥的特征:(1)如果底面是正多边形,棱锥称为正棱锥;如果底面不是正多边形,那么棱锥就称为斜棱锥。
(2)棱锥的体积等于底面积与高的乘积,并除以3。
(3)棱锥的侧棱的延长线与底面平面的交点称为顶点。
四、棱柱、棱台、棱锥的计算公式1. 棱柱的体积公式:V=Sh,其中V表示棱柱的体积,S表示底面的面积,h表示高。
2. 棱台的体积公式:V=(S1+S2+√S1S2)h/3,其中V表示棱台的体积,S1和S2表示底面和顶面的面积,h表示高。
3. 棱锥的体积公式:V=Sh/3,其中V表示棱锥的体积,S表示底面的面积,h表示高。
以上就是关于棱柱、棱台、棱锥的知识点总结,希望对你有所帮助。
如果还有其他问题,欢迎继续提问。
高二数学棱柱、棱锥和棱台【本讲主要内容】棱柱、棱锥和棱台棱柱的概念及性质、棱锥的概念及性质和棱台的概念及性质【知识掌握】 【知识点精析】1. 棱柱的有关概念和性质。
(1)棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。
(2)棱柱的几个概念。
这里,两个互相平行的面叫做棱柱的底面,其余各面叫做棱柱的侧面;两个面的公共边叫做棱柱的棱,其中两个侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点,不在同一个面内的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高。
(3)棱柱的表示方法:棱柱用表示底面各顶点的字母来表示,如三棱柱ABC A B C -111(4)棱柱的分类。
棱柱按底面边数可以分为三棱柱、四棱柱、五棱柱…… 按侧面与地面是否垂直,棱柱又可以分为直棱柱和斜棱柱。
底面是正多边形的直棱柱叫做正棱柱。
正棱柱是特殊的直棱柱。
(5)棱柱的性质: ①侧棱都相等;②侧面都是平行四边形;③两个底面与平行于底面的截面是全等的多边形;④过不相邻的两条侧棱的截面是平行四边形。
平行六面体:底面是平行四边形的四棱柱; 直平行六面体:侧棱与底面垂直的平行六面体; 长方体:底面是矩形的直平行六面体; 正方体:棱长都相等的长方体叫做正方体。
四棱柱与特殊的平行六面体有如下关系:{正方体}⊂{正四棱柱}⊂{长方体}⊂{直平行六面体}⊂{平行六面体}⊂{四棱柱} 长方体的性质:长方体的一条对角线的长的平方等于一个顶点上三条棱长的平方和。
2. 棱锥的有关概念。
(1)棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥。
(2)棱锥的几个概念。
这个多边形叫做棱锥的底面,其余各面叫做棱锥的侧面,相邻侧面的公共边叫做棱锥的侧棱,各侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高。
(3)棱锥的表示方法:棱锥用表示顶点和底面各顶点,或者底面一条对角线端点的字母来表示,如棱锥S -ABCDE ,或者棱锥S -AC 。
棱柱、棱锥和棱台知识点一 棱柱思考以下几何体是有什么共同特点,是怎样形成的?(1) (2) (3) (4)1、概念:一般地,由一个平面多边形沿某一方向平移形成的空间几何体叫做棱柱.2、元素:底面:平移起止位置的两个面叫做棱柱的底面.侧面:多边形的边平移所形成的面叫做棱柱的侧面.侧棱:相邻两侧面的公共边叫做棱柱的侧棱.3、性质:(1)两个底面是全等的多边形,且对应边互相平行 (2)侧面都是平行四边形.(3)所有侧棱平行且相等。
不具以上条件的多面体便不是棱柱,如图:4、表示:图(1)三棱柱'''C B A ABC -;图(4)六棱柱''''''F E D C B A ABCDEF -5、分类:(1)按底面的边数分:底面是三角形、四边形、五边形……的棱柱称为三棱柱、四棱柱、五棱柱……。
即底面是几边形就为几棱柱.(2)按侧面是否与底面垂直分:不垂直的叫做斜棱柱,垂直的叫做直棱柱。
底面是正多边形的直棱柱叫做正棱柱。
例如正方体就是正四棱柱。
(3)特殊棱柱侧棱与底面不垂直的棱柱叫做 ,侧棱与底面垂直的棱柱叫做 。
底面是正多边形的直棱柱叫做 。
底面是平行四边形的棱柱叫做 ,侧棱与底面垂直的平行六面体叫做 底面是矩形的直平行六面体是 ,棱长都相等的长方体是 。
例1、下列命题中不正确的是( B )A .直棱柱的侧棱就是直棱柱的高B .有一个侧面是矩形的棱柱是直棱柱C .直棱柱的侧面是矩形D .有一条侧棱垂直于底面的棱柱是直棱柱例2、设有三个命题(1)底面是平行四边形的四棱柱是平行六面体(2)底面是矩形的平行六面体是长方体 (3)直四棱柱是直平行六面体 以上命题中正确的有 (1)例3、长方体交与同一顶点的三条棱长分别为3,4,5,求长方体的对角线的长。
例4、在棱柱中( )A 只有两个面平行B 所有的棱都相等C 所有的面都是平行四边行D 两底面平行,且各侧棱也平行例5、判断下列说法是否正确(1)棱柱的各个侧面都是平行四边形。
初中数学知识归纳棱柱棱锥和棱台的性质与计算初中数学知识归纳:棱柱、棱锥和棱台的性质与计算在初中数学中,我们学习了许多图形的性质与计算方法,其中包括了棱柱、棱锥和棱台。
这些几何图形在我们的生活中随处可见,掌握它们的性质与计算方法对我们理解空间几何关系非常重要。
本文将就棱柱、棱锥和棱台的性质与计算进行归纳总结。
一、棱柱的性质与计算方法棱柱是一个具有两个并列相等的多边形底面,并由这些底面上的边和垂直于底面的侧面边组成的一类立体图形。
下面我们来归纳棱柱的性质与计算方法。
1. 底面性质:棱柱的底面是一个多边形,根据底面的形状可以称为正棱柱、长方体等。
正棱柱的底面是一个正多边形,而长方体的底面是一个矩形。
2. 侧面性质:棱柱的侧面是由底面对应边相连而形成的矩形或平行四边形。
这些侧面相互平行且等大,与底面垂直。
3. 高度与体积:棱柱的高度是底面上某个点到另一个底面上对应点的垂直距离。
设棱柱的底面积为S,高度为h,则棱柱的体积V等于底面积乘以高度,即V=S×h。
4. 表面积:棱柱的表面积等于底面积与侧面积之和。
底面积等于底面的面积,侧面积等于所有侧面的面积之和。
二、棱锥的性质与计算方法棱锥是一个具有一个多边形底面和以底面上的点为顶点的若干个三角形侧面组成的立体图形。
下面我们来归纳棱锥的性质与计算方法。
1. 底面性质:棱锥的底面是一个多边形,形状可以是正多边形或其他类型的多边形。
2. 侧面性质:棱锥的侧面是以任意底面顶点为顶点,连接底面顶点与其它底面边上点的三角形。
3. 高度与体积:棱锥的高度是底面上某个点到顶点的垂直距离。
设棱锥的底面积为S,高度为h,则棱锥的体积V等于底面积乘以高度再除以3,即V=(S×h)/3。
4. 表面积:棱锥的表面积等于底面积与侧面积之和。
底面积等于底面的面积,侧面积等于所有侧面的面积之和。
三、棱台的性质与计算方法棱台是一个具有两个底面为多边形的立体图形,两个底面之间的侧面为梯形或其他类型的多边形。
总结棱锥棱柱棱台1.介绍棱锥、棱柱和棱台是几何学中的常见立体图形,也是三维空间中具有特定特征和性质的几何体。
本文将对棱锥、棱柱和棱台进行简要的介绍,并总结它们的特征和性质。
2.棱锥棱锥是一种以一个多边形为底面,其余各边都连接到一个共同的点的几何体。
根据底面的形状,棱锥可以分为正棱锥和斜棱锥。
2.1 正棱锥正棱锥的底面是一个正多边形,且棱和顶点都位于正多边形所在的平面上。
正棱锥的侧面都是三角形,且棱相等。
2.2 斜棱锥斜棱锥的底面是一个普通多边形或者不规则多边形,且棱和顶点不在同一个平面上。
斜棱锥的侧面可以是三角形、四边形或更多边形,棱的长度可以不相等。
3.棱柱棱柱是一种以一个多边形为底面,其余各边都垂直于底面的几何体。
根据底面的形状,棱柱可以分为正棱柱和斜棱柱。
3.1 正棱柱正棱柱的底面是一个正多边形,且底面和顶面平行。
正棱柱的侧面都是矩形,且棱相等。
3.2 斜棱柱斜棱柱的底面是一个普通多边形或不规则多边形,底面和顶面不平行。
斜棱柱的侧面可以是矩形、平行四边形或更多边形,棱的长度可以不相等。
4.棱台棱台是一种由两个平行多边形和连接两个多边形相邻顶点的侧面组成的几何体。
棱台的顶面和底面平行,且侧面是由两个相同或不同的多边形所组成。
根据底面的形状和侧面的形状以及多边形之间的关系,棱台可以分为正棱台、斜棱台、直棱台和斜直棱台等多种类型。
4.1 正棱台正棱台的顶面和底面是相同的正多边形,侧面是由直线与多边形形成的三角形,且棱相等。
4.2 斜棱台斜棱台的顶面和底面是不相等的普通多边形,侧面可以是三角形、四边形或更多边形,棱的长度可以不相等。
4.3 直棱台直棱台的侧面都是矩形,其余性质与斜棱台相似。
4.4 斜直棱台斜直棱台的侧面可以是矩形、平行四边形或更多边形,棱的长度可以不相等。
5. 总结棱锥、棱柱和棱台是几何学中的重要概念和几何体。
通过对它们的分类和特征的总结,我们可以更好地理解它们的性质和特点。
了解这些特征和性质对于解决与这些几何体相关的问题和计算体积、表面积等都有很大的帮助。
一、棱柱、棱锥和棱台温故1.棱柱、棱锥、棱台的概念,它们的形成特点2.棱柱、棱锥、棱台中一些常用名称典例精析例1判断下列说法是否正确:(1)有两个面平行,其余各面都是平行四边形所围体一定是棱柱;(2)有一个面是四边形,其余各面都三角形所围成的几何体是棱锥;(3)用一个平行与棱锥底面的平面去截棱锥,得到的几何体叫棱台.(4)有一个面是多边形,其余各面都是三角形,由这些面围成的几何体是棱锥.(5)四面体的任何一个面都可以作为棱锥的底面.(6)棱锥的各侧棱长相等.例2(1)把正方形的一个角截去后,○1若剩下的几何体共有12条棱,画出该几何体图形;②若剩下的几何体共有14条棱,画出该几何体图形.(2)把两个棱长都相等的正三棱锥和正四棱锥的一个侧面重合在一起组成的几何体有个面.例3(1)如下图是一个矩形的游泳池,池底为一斜面,装满水后形成的几何体由哪些简单几何体组成?CC 1A 1B 1A(2)如图,长方体ABCD-A1B1C1D1的长、宽、高分别是5cm 、4cm 、3cm ,一只蚂蚁从A 到C1点,沿着表面爬行的最短距离是多少?(3)四面体P-ABC 中,PA=PB=PC=2,∠APB=∠BPC=∠APC=30°,一只蚂蚁从A 点出发沿四面体的表面绕一周,再回到A 点,蚂蚁经过的最短路程是多少?例4`(1)平行于棱柱侧棱的截面是什么图形?过棱锥顶点的截面是什么图形?(2) 用任意一个平面去截正方体,得到的截面可能是几边形?演练提升1. 四棱柱共有_______条棱;四棱锥共有_______条棱;四棱台共有共有_______条棱;四面体共有_______条棱.2. 长方体1111ABCD A B C D -中,作出截面11BCD A ,其截面把长方体分成两部分,则这两部分几何体分别是_________3. 如图,三棱台111ABC A B C -中,沿1A BC 截去三棱锥1A ABC -,则剩余部分是________4. 下列说法:① 当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥; ② 当棱台的一个底面收缩为一个点时,得到的几何体叫做棱锥;③ 棱柱被平行于底面的一个平面所截后,得到的截面和底面之间的几何体叫做棱台; ④ 棱锥被平行于底面的一个平面所截后,得到的截面和底面之间的几何体叫做棱台. 正确的有______.(填上所有正确说法的序号) 5. 给出下列几个命题: ① 棱柱的侧面都是平行四边形;② 棱锥的侧面为三角形,且所有侧面都是一个共同的公共点; ③ 多面体至少有四个面;④ 棱台的侧棱所在直线均相交于用一点. 其中正确的命题是________.6. 在正方体上任意选择4个顶点,它们可能是如下各种几何形体的4个顶点,这些几何形体是_________.(写出所有正确结论的编号)○1矩形;②不是矩形的平行四边形;③有三面为等腰直角三角形,有一面为等边三角形的四面体;④每个面都是等边三角形的四面体.7. 已知一长方体,根据图中三种状态所显示的数字,可推出“?”处的数字是.8. 有两个面互相平行, 其余各面都是梯形的多面体是.①棱柱 ②棱锥 ③棱台 ④可能是棱台, 一定不是棱柱或棱锥9. 如图,多面体的名称是_______________________; 该多面体的各面中,三角形有_______________个, 四边形有_________________________________个.10.如图,用过BC 的一个平面(此平面不过D A '')截去长方体的一个角,剩下的几何体是什么?截去的几何体是什么?请说出各部分的名称.11. 观察下面三个图形,分别判断(1)中的三棱镜,(2)中的方砖,(3)中的螺杆头部模型,分别有多少对互相平行的平面?其中能作为棱柱底面的分别有几对?(1) (2)12. 根据下列对几何体结构的描述,说出几何体的名称,并试画出其立体图. (1)由1个梯形沿某一方向平移形成;(2)由8个面围成,其中两个面是互相平行且全等的正六边形,其他面都是全等矩形; (3)由4个面围成,且每个面都是三角形.AA 'DD 'BB 'C 'CCA 'B AB 'C 'AA 'BCDB 'C 'D 'AA 'BCDEF B 'C 'D 'F 'E '(3)二、圆柱、圆锥、圆台和球温故1.圆柱、圆锥、圆台和球的概念2.圆柱、圆锥、圆台和球的截面及它们之间的关系典例精析例1(1)给出下列命题:①圆柱的底面是圆;②经过圆柱任意两条母线的截面是一个矩形;③连接圆柱上、下底面圆周上两点的线段是圆柱的母线;④圆柱的任意两条母线互相平行.其中说法正确的是.(2)已知一个圆柱的轴截面是一个正方形且其面积是Q,求此圆柱的底面半径.例2(1)直角三角形ABC中,AB=3,BC=4,AC=5,以AB所在直线为轴旋转一周,分析所形成的几何体的结构特征.(2)给出下列命题:①以直角三角形的一条边为轴,其余两边旋转形成的曲面围成的几何体是圆锥;②以等腰三角形底边上的中线为轴,将三角形旋转形成的曲面所围成的几何体是圆锥;③经过圆锥任意两条母线的截面是等腰三角形;④圆锥侧面的母线长一定大于圆锥底面圆直径.其中正确命题的序号是例3(1)判断图所表示的几何体是不是圆台?为什么?(2)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1:4,母线长是10 cm,则圆锥的母线长为cm.36cm2,则球心与截面圆例4(1)已知球的半径为10 cm,若它的一个截面圆的面积是π圆心的距离是.(2)已知球的两个平行截面分别为π5和π8,它们位于球心的同侧,且距离等于1,求这个球的半径.例5`(1)如下图绕虚线旋转一周后形成的立体图形是由哪些简单几何体构成的?(2)下图(1)是由图(2)中的哪个平面图旋转得到的(3)如图是一枚公章,这个几何体是由简单的几何体、、组合而成的.演练提升1.将等边三角形绕着它的一边上的中线所在的直线旋转0180,形成的几何体是______. 2.将一个直角三角形绕着它的斜边所在直线旋转一周,形成的几何体是_________.3.下列关于球的叙述:①将圆绕着它的任意一条直径所在的直线旋转0180,形成的几何体是球;②将半圆绕着它的任意一条半径所在的直线旋转一周,形成的几何体是球;③空间中到l l 的点的集合是球.正确的是__________.(填上所有正确的一个定点的距离小于等于(0)说法的序号)4.如果一个球恰好内切于一个棱长为10cm的正方体盒子(球与正方体的六个面都能接触),那么这个球的半径为_______cm.5.下列说法:①当圆柱的一个底面收缩为一个点时,得到的几何体叫做圆锥;②当圆台的一个底面收缩为一个点时,得到的几何体叫做圆锥;③圆柱被平行于底面的一个平面所截后,得到的截面和底面之间的几何体叫做圆台;④圆锥被平行于底面的一个平面所截后,得到的截面和底面之间的几何体叫做圆台.其中,不正确的是______.6.下列说法:①用一个平面去截一个球所得的截面是一个圆面;②用一个平面去截一个圆柱所得的截面是一个圆面或矩形;③用一个平面去截一个圆锥所得的截面是一个圆面或等腰三角形;7.如图,将直角梯形ABCD绕腰CD边所在的直线旋转一周,由此形成的几何体是由哪些简单几何体构成的?CDCBA8.用一个平面截一个几何体,不管怎样截,得到的都是圆面,则这个几何体是__________ 9.若一个圆锥的轴截面是等边三角形,面积是3,则这个圆锥的母线长为______________ 10.圆台的上、下底面半径分别为2和4,则它的中截面半径为____________11.矩形ABCD 中,AB=5,AD=2,以AB 为轴旋转一周,所得圆柱的截面面积为_________ 12.圆台的上、下底面半径分别为2和4,则它的中截面半径为____________13.矩形ABCD 中,AB=5,AD=2,以AB 为轴旋转一周,所得圆柱的截面面积为_________ 14.如图所示的几何体是由一个圆柱挖去一个以圆柱的的上底面为底面,下底面圆心为顶点的圆锥而成的.现用一个竖直的平面去截这个几何体,则所截得的图形可能是__________(5)(4)(3)(2)(1)15.一个正方体内接于一个球,过球心作一个截面,下面的几个截面图中,必定错误的是 .A .B .C .D .16.圆柱的轴截面(经过圆柱的轴所作的截面)是边长为5cm 的正方形ABCD ,则圆柱侧面上从点A 到点C 的最短距离为___________17.在有太阳的某个时刻,一个大球放在水平地面上,球的影子伸到距离球与地面接触点10m处,同一时刻一根长3m的木棒垂直于地面,且影子长1m,求此球的半径.2,∠C=90°,以直线AC为轴将△ABC旋18.在直角三角形ABC中,已知AC=2,BC=3转一周得到一个圆锥,求经过该圆锥任意两条母线的截面三角形的面积的最大值. 19.一个圆锥的底面半径为2,高为6,在其中有一个高为x的内接圆柱.(1)用x表示圆柱的轴截面面积S (2)当x为何值时,S最大?。
棱柱、棱锥、棱台表面积和体积知识棱柱、棱锥、棱台,这几个立体图形就像几何世界里的小明星,各有各的风采,它们的表面积和体积可都是很有趣的学问呢。
棱柱就像是一个个规规矩矩站着的柱子,有直棱柱,斜棱柱之分。
棱柱的表面积啊,就好比给这个柱子穿上一层外皮,这个外皮的面积就是它的表面积啦。
对于直棱柱来说,它的侧面都是长方形,底面是多边形。
那它的表面积就是两个底面多边形的面积加上所有侧面长方形的面积之和。
这就好像给一个多层蛋糕做包装,底面的蛋糕片就是底面多边形,侧面的奶油层就是那些长方形,把它们的面积都加起来才能把这个蛋糕完整包起来。
棱柱的体积呢,就像这个柱子能装多少东西似的,可以用底面积乘以高来计算。
你看,底面积就像是柱子的地基大小,高就是柱子的高度,地基越大,柱子越高,能装的东西肯定就越多呀。
这就跟咱们家里的储物箱一样,箱子底面大,又比较高,就能放更多的杂物嘛。
棱锥就不一样啦,棱锥像是一个尖尖的帽子。
它的底面也是多边形,但是只有一个顶点,从顶点向底面引垂线,这个垂线段的长度就是棱锥的高。
棱锥的表面积稍微复杂点,它是底面多边形的面积加上各个三角形侧面的面积之和。
这就好比给这个尖尖的帽子缝布,底面那块布是多边形的,周围一圈三角形的布缝起来就成了这个独特的帽子形状啦。
棱锥的体积计算很神奇,是三分之一乘以底面积乘以高。
为啥是三分之一呢?你可以这么想,棱锥就像是棱柱的一部分,一个棱柱可以分成三个等底等高的棱锥,就好像一个大蛋糕可以切成三块形状相同的小蛋糕一样,所以棱锥的体积就是棱柱体积的三分之一。
棱台呢,它就像是棱锥被削掉了尖顶剩下的部分。
棱台的表面积是上下底面多边形的面积加上侧面梯形面积之和。
你可以把它想象成一个特殊的灯罩,上下底面是不同大小的多边形,侧面就是梯形的罩面。
棱台的体积公式是三分之一乘以高乘以(上底面积加上下底面积加上上下底面积乘积的开方)。
这个公式看起来有点复杂,不过没关系。
咱们可以这么理解,棱台的体积计算也是和棱锥棱柱有点关系的。
棱柱棱锥棱台的体积公式
棱柱、棱锥和棱台是一些常见的几何形体,它们都具有棱和面的特点。
对于这些几何形体,我们可以用体积来描述它们的大小。
下面分别介绍棱柱、棱锥和棱台的体积公式。
棱柱的体积公式:
棱柱的体积可以通过底面积与高度相乘来计算。
假设棱柱的底面积为A,高度为h,则棱柱的体积V为:
V = Ah
例如,一个正六棱柱的底面积为4平方米,高度为3米,则它的体积为:
V = 4 × 3 = 12
因此,该正六棱柱的体积为12立方米。
棱锥的体积公式:
棱锥的体积可以通过底面积与高度相乘再除以3来计算。
假设棱锥的底面积为A,高度为h,则棱锥的体积V为:
V = 1/3Ah
例如,一个正五棱锥的底面积为6平方米,高度为4米,则它的体积为:
V = 1/3 × 6 × 4 = 8
因此,该正五棱锥的体积为8立方米。
棱台的体积公式:
棱台的体积可以通过上底面积与下底面积的平均值与高度相乘
来计算。
假设棱台的上底面积为A1,下底面积为A2,高度为h,则棱台的体积V为:
V = 1/3h(A1 + A2 + √(A1A2))
例如,一个上底面积为6平方米,下底面积为4平方米,高度为3米的棱台,则它的体积为:
V = 1/3 × 3 × (6 + 4 + √(6 × 4)) = 18
因此,该棱台的体积为18立方米。
总之,对于棱柱、棱锥和棱台这些常见的几何形体,我们可以用相应的体积公式来计算它们的大小。
这些公式是在数学研究中得出的定理,可以帮助我们更好地理解这些几何形体的特点和性质。
理解立体几何中的棱柱棱锥和棱台的特点在立体几何学中,棱柱、棱锥和棱台是常见的几何体。
它们都是由多个多边形组成,具有不同的特点和性质。
本文将详细介绍棱柱、棱锥和棱台的特点,以及它们在日常生活中的应用。
一、棱柱的特点1.1 定义棱柱是由两个平行且相等多边形底面和连接底面的矩形侧面构成的几何体。
棱柱的底面可以是任意多边形,而矩形侧面的长度等于底面的周长。
1.2 特点(1)棱柱有两个底面,它们是平行且相等的多边形。
(2)棱柱的侧面是矩形,长宽分别等于底面周长和底面之间的距离。
(3)棱柱的顶点连接两个底面的对应顶点,顶点与底面的连接线段被称为棱柱的高。
(4)面的个数:侧 + 2个底面,其中侧面个数等于底面的边数。
(5)棱柱的体积可以通过底面积乘以高来计算,公式为V = 底面积 ×高。
1.3 应用棱柱在日常生活中有很多应用,例如:(1)建筑工程中的柱子、电线杆等都是棱柱的形状。
(2)常见的马克杯、鼓棒等也是棱柱的形状。
二、棱锥的特点2.1 定义棱锥是由一个多边形底面和连接底面的三角形侧面构成的几何体。
棱锥的底面可以是任意多边形,而三角形侧面的高等于棱锥的高,并与底面相交于一个顶点。
2.2 特点(1)棱锥有一个底面,其他面都是三角形。
(2)棱锥的底面可以是任意多边形,而三角形侧面的高等于棱锥的高。
(3)棱锥的顶点连接底面的每个顶点,顶点与底面的连接线段被称为棱锥的高。
(4)面的个数:侧 + 1个底面,其中侧面个数等于底面的边数。
(5)棱锥的体积可以通过底面积乘以高再除以3来计算,公式为V = 底面积 ×高 / 3。
2.3 应用棱锥在日常生活中也有很多应用,例如:(1)常见的路灯、红绿灯、教师讲台等都是棱锥的形状。
(2)糖果塔、圆锥形帽子等也是棱锥的形状。
三、棱台的特点3.1 定义棱台是由两个平行且相等多边形底面和连接底面的梯形侧面构成的几何体。
棱台的底面可以是任意多边形,而底面和梯形侧面的高度相等。
1.1.1 棱柱、棱锥、棱台1.棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点.棱柱主要从下面几点把握:(1)组成元素:底面.侧面.侧棱.顶点.(2)本质特征:①有两个面相互平行;②其余各面的两面的公共边相互平行.(3)结构特征:①侧棱都相等,侧面是平行四边形;②两个底面相互平行;③过不相邻的两条侧棱的截面是平行四边形.(4)分类:棱柱的分类方法有两种:①按底面多边形的边数可分为三棱柱.四棱柱.五棱柱等;②按侧棱与底面是否垂直分为直棱柱.斜棱柱.2.棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.棱锥主要从下面几点把握:(1)组成元素:底面.侧面.侧棱.顶点.(2)结构特征:①有一个面是多边形;②其余各面是有一个公共点的三角形.(3)分类:①棱柱根据侧棱和底面的关系分为两种:一种当侧棱与底面不垂直时,称为斜棱柱;另一种当侧棱与底面垂直时,称为直棱柱.直棱柱的面若为正多边形则称为正棱柱.②按底面多边形的边数分为三棱锥.四棱锥.五棱锥等.棱锥主要从下面几点把握:(1)组成元素:底面.侧面.轴.母线.(2)结构特征:①平行于底面的截面都是圆;②过轴的截面是全等的等腰三角形.(3)表示方法:用表示轴的字母表示.3.棱台与多面体:用一个平行于底面的平面去截棱锥,底面和截面之间的部分叫做棱台;原棱锥的底面和截面分别叫做棱台的下底面和上底面;棱台也有侧面.侧棱.顶点.棱台主要从下面几点把握:(1)组成元素:上.下底面.侧面.侧棱.顶点.(2)结构特征:各侧棱延长后相交于一点,两底面是平行的相似多边形.(3)分类:棱台是由棱锥用平行于底面的平面截得的,故其分类和棱锥的分类方法一样.多面体的结构特征由平面多边形(包括它们内部的平面部分)围成的几何体称为多面体.其中,各个额多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.连结不在同一面上的两个顶点的线段叫做多面体的对角线.把多面体的任一个平面伸展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫做凸多面体.一个多面体至少四个面.多面体按照它的面数分别叫做四面体.五面体.六面体等.几种常凸多面体间的关系几种特殊四棱柱的特殊性质名称特殊性质平行六面体底面和侧面都是平行四边行;四条对角线交于一点,且被该点平分直平行六面体侧棱垂直于底面,各侧面都是矩形;四条对角线交于一点,且被该点平分长方体底面和侧面都是矩形;四条对角线相等,交于一点,且被该点平分正方体棱长都相等,各面都是正方形四条对角线相等,交于一点,且被该点平分例1 用一个平面去截棱锥, 得到两个几何体, 下列说法正确的是()A 一个几何体是棱锥, 另一个几何体是棱台B 一个几何体是棱锥, 另一个几何体不一定是棱台C 一个几何体不一定是棱锥, 另一个几何体是棱台D 一个几何体不一定是棱锥, 另一个几何体不一定是棱台答案:D。
课题:棱柱、棱锥、棱台
三维目标
一、知识与技能
1、了解多面体、棱柱、棱锥、棱台的定义、性质及它们之间的关系。
2、掌握棱柱、棱台的画法
二、过程与方法
1、结合模型、动态的或静态的直观图,了解、认识和研究各种几何体
2、结合集合的观点来认识各种几何体的性质
三、情感、态度与价值观
培养空间(三维空间)与平面(二维空间)问题相互转化(升降维)的思想方法
教学重点
多面体、棱柱、棱锥和棱台的定义、性质及他们之间的关系,逐步培养空间(三维空间)与平面(二维空间)问题相互转化(升降维)的思想方法
教学难点
棱柱、棱台的画法,及棱柱、棱锥、棱台特点的理解
教学过程
(一)棱柱的概念
1:
平移:指将一个图形上所有点按某一确定的方向移动相同的距离
2.定义
一般地,由一个平面多边形沿某一方向平移
形成的空间几何体叫做棱柱(prism [`prizm])。
思考:下图的棱柱分别是由何种多边形平移得到?
3.棱柱的元素
a.平移起止位置的两个面叫做棱柱的底面(base)。
b.多边形的边平移所形成的面叫做棱柱的侧面(lateral face)。
c.两个侧面的公共边叫做棱柱的侧棱。
d.侧面与底的公共顶点叫做棱柱的顶点。
4.棱柱的分类:按底面的边数分为:
棱柱的底面可以是三角形、四边形、五边形、……把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……
5.棱柱的表示法
用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDE- A1B1C1D1E1
6.棱柱的性质
a. 侧棱都相等,侧面是平行四边形;
b. 两个底面是全等的多边形,且对应边互相平行;
c. 过不相邻的两条侧棱的截面是平行四边形
(二)棱锥的概念
思考:看下面两个图形有何变化?
棱锥的定义:当棱柱的一个底面收缩为一个点时,得到的几何体叫棱锥(pyramid)。
与棱柱相仿,棱锥中常用名称的含义
侧面:有公共顶点的各三角形面
底面(底):余下的那个多边形
侧棱:两个相邻侧面的公共边
顶点:各侧面的公共点
思考:有一个面是多边形其余各面是三角形,这个多面体是棱锥吗?
(三)棱台的概念思考:用一个平行于棱锥底面的平面去截棱锥,得到两个怎么样的几何体? 棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分
棱台的性质:上下底面平行,且对应边成比例。
只有这样,才保证各侧棱交于一点。
提问:如图的几何体是不是棱台?为什么?
例1:画一个六棱柱和一个五棱锥。
六棱柱的画法
棱锥的的画法
思考:棱台怎么画?
(四)多面体的概念 棱柱、棱锥、棱台都是由一些平面多边形围成的几何体。
多面体(polyhedron):由若干个平面多边形围成的几何体
多面体有几个面就称为几面体,如三棱锥是四面体
思考:多面体至少有几个面?这个多面体是怎样的几何体?
(五)巩固练习1、问:下列几何体哪些是棱柱、棱锥、棱台?
A B C D E F A ’ B ’
C ’
D ’
E ’
F ’
A B C D E
S
(1) (3)
2、将下列几何体按结构特征分类填空
①集装箱
②魔方 ③金字塔 ④三棱镜
⑤一个四棱锥形的建筑物被台风刮走了一个顶,剩下的上底面与地面平行
(1)棱柱结构特征的有:
(2)棱锥结构特征的有:
(3)棱台结构特征的有:
回顾与总结:
•(1)本节课认识了棱柱、棱锥、棱台和研究它们的性质。
•(2)掌握用基本图形去解决有关问题的方法,提高应用有关知识解决实际问题的能力; •(3
)树立将空间问题转化成平面问题的转化思想。
(六)作业
第8页 练习 3
(6)(7) (5)。