最新高二物理教学案例:简谐运动回复力和能量.doc
- 格式:doc
- 大小:24.50 KB
- 文档页数:3
人教版高中物理选择性必修第一册《简谐运动的回复力和能量》教案及教学反思一、教学目标1.理解简谐运动的概念和特点;2.掌握简谐运动的回复力和能量的计算;3.理解振幅、周期、频率、角速度等概念,并应用于简谐运动问题的解答中;4.培养学生分析和解决简谐运动问题的能力;5.提高学生实验和观察的能力。
二、教学内容1.简谐运动的概念和特点;2.简谐运动的回复力和能量的计算;3.振幅、周期、频率、角速度等概念。
三、教学方法1.讲授和演示相结合的教学方法;2.导入问题的方式让学生思考并提出问题;3.实验和观察的方式培养学生的实践能力;4.让学生参与讨论和解答问题的方式培养学生的分析和解决问题的能力。
四、教学步骤第一步:导入利用一些日常生活中的场景,例如钟摆的摆动、弹簧的伸缩等,引导学生思考相应的问题,让学生对简谐运动有一个初步的概念。
第二步:讲授1.简谐运动的概念和特点1.定义:由一个守恒力场中,物体在平衡位置附近作往复运动所产生的运动称为简谐运动。
2.特点:周期、振幅、回复力和势能都是固定的。
2.简谐运动的回复力和能量的计算1.回复力的计算:F=-kx2.势能的计算:E_p=1/2kx^23.动能的计算:E_k=1/2mv^24.总能量的计算:E=E_p+E_k=1/2kx2+1/2mv23.振幅、周期、频率、角速度等概念1.振幅:简谐运动物体往复运动的极限位移。
2.周期:物体在简谐运动中往复运动一次所需要的时间。
3.频率:简谐运动中往复运动的次数与时间的比值。
4.角速度:简谐运动中物体运动角度的变化速率,单位为弧度每秒。
第三步:实验与观察在教学过程中,可以通过简谐振子的实验来观察振子的振幅、周期、频率等物理量,并通过实验数据来验证简谐运动的特点和回复力与能量的计算公式。
第四步:巩固与拓展在教学过程中,可以通过课堂练习和板书笔记等方式巩固学生的学习成果,引导学生拓展思维,尝试解决一些运用简谐运动的问题。
五、教学反思通过本节课的教学,使学生理解了简谐运动的概念,掌握了回复力和能量的计算方法,并且对振幅、周期、频率、角速度等概念有了更深入的了解。
简谐运动的回复力和能量教学目标(1)会分析弹簧振子的受力情况,理解回复力的概念。
(2)认识位移、速度、回复力和加速度的变化规律及相互联系。
(3)会用能量观点分析水平弹簧振子动能、势能的变化情况,知道简谐运动中机械能守恒。
教学重难点教学重点(1)理解回复力的概念。
(2)位移、速度、回复力和加速度的变化规律。
(3)简谐运动中动能和势能的变化。
教学难点从回复力角度证明物体的运动是简谐运动。
教学准备水平弹簧振子,多媒体课件教学过程新课引入教师设问:当我们把弹簧振子的小球拉离平衡位置释放后,小球就会在平衡位置附近做简谐运动。
小球的受力满足什么特点才会做这种运动呢?根据牛顿运动定律,可以作出以下判断:做简谐运动的物体偏离平衡位置向一侧运动时,一定有一个力迫使物体的运动速度逐渐减小直到减为0,然后物体在这个力的作用下,运动速度又由0逐渐增大并回到平衡位置;物体由于惯性,到达平衡位置后会继续向另一侧运动,这个力迫使它再一次回到平衡位置;正是在这个力的作用下,物体在平衡位置附近做往复运动。
我们把这样的力称为回复力。
讲授新课一、简谐运动的回复力教师活动:做简谐运动的物体受到的回复力有什么特点?下面我们以弹簧振子做简谐运动为例进行分析。
如图1甲,当小球在O 点(平衡位置)时,所受的合力为0;在O 点右侧任意选择一个位置P ,无论小球向右运动还是向左运动,小球在P 点相对平衡位置的位移都为x ,受到的弹簧弹力如图1乙所示。
从图中可以看出,迫使小球回到平衡位置的回复力应该是由弹簧弹力提供的,回复力大小为F =kx (k 为弹簧的劲度系数),方向指向平衡位置。
同样道理,当小球在O 点左侧某一位置Q 时,迫使小球回到平衡位置的回复力还是由弹簧弹力提供,大小仍为F =kx (如图1丙所示),方向指向平衡位置。
从上面的分析可以看出,弹簧对小球的弹力是小球做简谐运动的回复力,(1)回复力的特点:大小与小球相对平衡位置的位移成正比,方向与位移方向相反。
11.3、简谐运动的回复力和能量示范教案一、教学目的1.掌握简谐运动的定义;了解简谐运动的运动特征;掌握简谐运动的动力学公式;了解简谐运动的能量变化规律。
2.引导学生通过实验观察,概括简谐运动的运动特征和简谐运动的能量变化规律,培养归纳总结能力。
3.结合旧知识进行分析,推理而掌握新知识,以培养其观察和逻辑思维能力。
二、教学难点1.重点是简谐运动的定义;2.难点是简谐运动的动力学分析和能量分析。
三、教具:弹簧振子,挂图。
四、主要教学过程(一)引入新课提问1:什么是机械振动?答:物体在平衡位置附近做往复运动叫机械振动。
提问2:振子做什么运动?日常生活中经常会遇到机械振动的情况:机器的振动,桥梁的振动,树枝的振动,乐器的发声,它们的振动比较复杂,但这些复杂的振动都是由简单的振动的组成的,因此,我们的研究仍从最简单、最基本的机械振动开始。
刚才演示的就是一种最简单、最基本的机械振动,叫做简谐运动。
提问3:过去我们研究自由落体等匀变速直线运动是从哪几个角度进行研究的?今天,我们仍要从运动学(位移、速度、加速度)研究简谐运动的运动性质;从动力学(力和运动的关系)研究简谐运动的特征,再研究能量变化的情况。
(二)新课教学(第二次演示竖直方向的弹簧振子)提问4:大家应明确观察什么?(物体)提问5:上述四个物理量中,哪个比较容易观察?提问6:做简谐运动的物体受的是恒力还是变力?力的大小、方向如何变?小结:简谐运动的受力特点:回复力的大小与位移成正比,回复力的方向指向平衡位置提问7:简谐运动是不是匀变速运动?小结:简谐运动是变速运动,但不是匀变速运动。
加速度最大时,速度等于零;速度最大时,加速度等于零。
提问8:从简谐运动的运动特点,我们来看它在运动过程中能量如何变化?让我们再来观察。
提问9:振动前为什么必须将振子先拉离平衡位置?(外力对系统做功)提问10:在A点,振子的动能多大?系统有势能吗?提问11:在O点,振子的动能多大?系统有势能吗?提问12:在D点,振子的动能多大?系统有势能吗?提问13:在B,C点,振子有动能吗?系统有势能吗?小结:简谐运动过程是一个动能和势能的相互转化过程。
11.3简谐运动的回复力和能量教学设计【教学目标】1.掌握简谐运动的定义,了解简谐运动的运动特征。
2.掌握简谐运动的动力学公式。
3.了解简谐运动的能量变化规律。
【重点难点】1.掌握简谐运动的定义。
2.简谐运动的动力学分析和能量分析。
【教学方法】讲练结合【教学用具】课件【教学过程】一、简谐运动的回复力1、回复力:(1)定义:当振动物体离开平衡位置后,受到的使它返回平衡位置的力。
(2)特点:回复力的方向总是指向平衡位置,其作用是使物体能返回平衡位置。
(类比向心力)(3)回复力是根据力的作用效果来命名的。
回复力可以是一个力,也可以是几个力的合力,还可以是某个力的分力。
2、弹簧振子的回复力:F=-kx(1)k —— 弹簧的劲度系数,对于一般的简谐运动,k表示回复系数(回复力与振动位移的比例系数);(2)“-” ——负号表示回复力方向总与振动位移方向相反。
3、简谐运动:如果质点所受的力与它偏离平衡位置的位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。
【注意】我们可以用F=-kx来判断一个物体的振动是否是简谐运动。
二、简谐运动的能量1、简谐运动过程分析:2、简谐运动的能量与振幅有关:振幅越大,振动系统的能量越大3、简谐运动过程中机械能守恒。
【例1】如图将弹簧振子沿竖直方向悬挂起来,弹簧的劲度系数为,小球的质量为,小球在平衡位置静止,现沿竖直方向将小球拉离平衡位置后松开,试判断小球的振动是否为简谐运动?(空气阻力不计)分析:分析回复力的来源,看小球在任意位置....处所受的回复力是否满足F=-kx。
解答:设小球静止时,弹簧的伸长量为x0,根据平衡条件,有kx0=mg ①设小球以平衡位置为原点,竖直向下为正方向,当小球向下偏离平衡位置的位移为x时,小球受到的合力提供回复力:F=mg-k(x0+x)得:F=-kx这与做简谐运动物体的受力特点一致,所以,小球的运动是简谐运动。
小结:判断一个振动是否为简谐运动,主要看回复力是否满足F=-kx。
第三节简谐运动的回复力和能量【教学目标】一、知识目标1.知道振幅越大,振动的能量(总机械能)越大;2.对单摆,应能根据机械能守恒定律进行定量计算;3.对水平的弹簧振子,应能定量地说明弹性势能与动能的转化;4.知道简谐运动的回复力特点及回复力的来源。
5.知道在什么情况下可以把实际发生的振动看作简谐运动。
二、能力目标1.分析单摆和弹簧振子振动过程中能量的转化情况,提高学生分析和解决问题的能力。
2.通过阻尼振动的实例分析,提高处理实际问题的能力。
三、德育目标1.简谐运动过程中能量的相互转化情况,对学生进行物质世界遵循对立统一规律观点的渗透。
2.振动有多种不同类型说明各种运动形式都是普遍性下的特殊性的具体体现。
【教学重点】1.对简谐运动中能量转化和守恒的具体分析。
2.什么是阻尼振动。
【教学难点】关于简谐运动中能量的转化。
【教学过程】一、导入新课1.演示:取一个单摆,将其摆球拉到一定高度后释放,观察它的单摆摆动,最后学生概括现象;2.现象:单摆的振幅会越来越小,最后停下来。
3.教师讲解引入:实际振动的单摆为什么会运动,又为什么会停下来,今天我们就来学习这个问题。
板书:简谐运动的回复力与能量二、新课教学1. 简谐运动的回复力弹簧振子振动时,回复力与位移是什么关系?归纳根据胡克定律,弹簧振子的回复力与位移成正比,与位移方向相反。
回复力具有这种特征的振动叫简谐运动。
物体在跟位移大小成正比,并且总指向平衡位置的力作用下的振动,叫做简谐运动。
F=-kx式中F为回复力;x为偏离平衡位置的位移;k是常数,对于弹簧振子,k是劲度系数,对于其它物体的简谐运动,k是别的常数;负号表示回复力与位移的方向总相反。
弹簧振子的振动只是简谐运动的一种。
2.简谐运动的能量(1)水平弹簧振子在外力作用下把它拉伸,松手后所做的简谐运动。
不计阻力。
单摆的摆球被拉伸到某一位置后所做的简谐运动;如下图甲、乙所示(2)试分析弹簧振子和单摆在振动中的能量转化情况,并填入表格。
11.3 简谐运动的回复力和能量教学设计广西马山县金伦中学黄梦春知识目标1、理解回复力的物理意义和特点;2、能够根据简谐运动的回复力特点证明简谐运动;3、知道简谐运动的机械能守恒及动能和势能的相互转化4、进一步理解简谐运动的周期性和对称性重点:回复力的来源,特点,简谐运动的证明;简谐运动的能量特点.难点:简谐运动的证明新知预习1.回复力(1)回复力的方向跟振子偏离平衡位置的位移方向____________,总是指向___________位置,它的作用是使振子能____________平衡位置.(2)做简谐运动的弹簧振子的回复力为____________,式中常数k为比例系数,叫做弹簧的____________;负号表示________________________.(3)回复力是____________性变化的力.2.简谐运动的能量的特征(1)简谐运动过程是一个____________和____________不断转化的过程,在任意时刻振动物体的总机械能____________.(2)在平衡位置,动能最__________,势能最_________;在位移最大处,势能最__________,动能最__________.(3)振动系统的机械能跟振幅有关,振幅越大机械能越__________.典题·热题知识点一简谐运动过程中基本物理量的变化例1弹簧振子在光滑水平面上做简谐运动,在振子向平衡位置运动的过程中( )A.振子所受的回复力逐渐增大B.振子的位移逐渐增大C.振子的速度逐渐减小D.振子的加速度逐渐减小解析:振子位移是指由平衡位置指向振动物体所在位置的位移,因而向平衡位置运动时位移逐渐减小,而回复力与位移成正比,故回复力也减小,由牛顿第二定律a=F/m得,加速度也减小,物体向着平衡位置运动时,回复力与速度方向一致,故物体的速度逐渐增大,正确答案选D.答案:D方法归纳分析回复力变化时,首先要弄清回复力的来源,是由哪些因素引起的,由哪些力构成,如本题是F=-kx.例2如图11-3-6所示为某一质点的振动图象,由图象可知在t1和t2两时刻,质点的速度v1、v2,加速度a1、a2的正确关系为( )图11-3-6A.v 1<v 2,方向相同B.v 1<v 2,方向相反C.a 1>a 2,方向相同D.a 1>a 2,方向相反解析:在t 1时刻质点向下向平衡位置运动,在t 2时刻质点向下远离平衡位置运动,所以v 1与v 2的方向相同,但由于在t 1时刻质点离平衡位置较远,所以v 1<v 2,a 1>a 2;质点的加速度方向总是指向平衡位置的,因而可知在t 1时刻加速度方向向下,在t 2时刻加速度方向向上.正确选项为A 、D.答案:AD巧解提示 处理图象问题时一定要把图象还原为质点的实际振动过程来分析,图象不是振动问题的运动轨迹.知识点二 简谐运动的能量例3 如图11-3-7所示,一弹簧振子在A 、B 间做简谐运动,平衡位置为O ,已知振子的质量为M ,若振子运动到B 处时将一质量为m 的物体放在M 的上面,且m 和M 无相对运动而一起运动,下述正确的是( )图11-3-7A.振幅不变B.振幅减小C.最大动能不变D.最大动能减少解析:当振子运动到B 点时,M 的动能为零,放上m ,系统的总能量为弹簧所储存的弹性势能E p ,由于简谐运动过程中系统的机械能守恒,即振幅不变,故A 选项正确,当M 和m 运动至平衡位置O 时,M 和m 的动能和即为系统的总能量,此动能最大,故最大动能不变,C 选项正确.答案:AC方法归纳 分析简谐运动的能量问题,要弄清运动质点的受力情况和运动的情况,弄清是什么能之间的转化及转化关系等.例4 做简谐运动的弹簧振子,振子质量为m ,最大速度为v ,则下列说法正确的是( )A.从某时刻算起,在半个周期的时间内,回复力做的功一定为零B.从某时刻算起,在半个周期的时间内,回复力做的功可能是零到21mv 2之间的某一个值 C.从某一时刻算起,在半个周期的时间内,速度变化量一定为零D.从某一时刻算起,在半个周期的时间内,速度变化量的大小可能是零到2v 之间的某一值 解析:振子在半个周期内刚好到达与初位置关于平衡位置对称的位置,两位置速度大小相等,故由动能定理知,回复力做的功一定为零,则A 选项正确,B 选项错误;但由于速度反向(初位置在最大位移处时速度均为零),所以在半个周期内速度变化量的大小为初速度大小的两倍,因此在半个周期内速度变化量大小应为0到2v 之间的某个值,则C 选项错,D 选项正确. 答案:AD方法归纳 简谐运动过程中回复力为变力,因此求回复力的功应选择动能定理;由于速度变化量与速度均为矢量,故计算时应特别注意方向.知识点三 简谐运动与力学的综合例5 如图11-3-8所示,一质量为M 的无底木箱,放在水平地面上,一轻质弹簧一端悬于木箱的上边,另一端挂着用细线连接在一起的两物体A 和B ,m A =m B =m ,剪断A 、B 间的细线后,A 做简谐运动,则当A 振动到最高点时,木箱对地面的压力为____________________.图11-3-8解析:本题考查简谐运动的特点及物体受力情况的分析.剪断细线前A 的受力情况: 重力:mg ,向下;细线拉力:F 拉=mg ,向下;弹簧对A 的弹力:F=2 mg ,向上.此时弹簧的伸长量为Δx=k F =k mg 2. 剪断细线后,A 做简谐运动,其平衡位置在弹簧的伸长量为Δx=k mg 处,最低点即刚剪断细线时的位置,离平衡位置的距离为k mg ,由简谐运动的特点知最高点离平衡位置的距离也为kmg ,所以最高点的位置恰好在弹簧的原长处,此时弹簧对木箱作用力为零,所以此时木箱对地面的压力为Mg.答案:Mg 方法归纳 在一些力学综合题目的处理中,如果能充分考虑简谐运动的对称性,可收到事半功倍的效果.例6如图11-3-9所示,A 、B 叠放在光滑水平地面上,B 与自由长度为L 0的轻弹簧相连,当系统振动时,A 、B 始终无相对滑动,已知m A =3m ,m B =m ,当振子距平衡位置的位移x=20L 时系统的加速度为a ,求A 、B 间摩擦力F f 与位移x 的函数关系.图11-3-9解析:设弹簧的劲度系数为k ,以A 、B 整体为研究对象,系统在水平方向上做简谐运动,其中弹簧的弹力作为系统的回复力,所以对系统运动到距平衡位置20L 时有:k 20L =(m A m B a ,由此得k=08L m a . 当系统的位移为x 时,A 、B 间的静摩擦力为F f ,此时A 、B 具有共同加速度a′,对系统有:kx=(m A +m B )a′ ①k=08L m a ,a′=02L a x. ② 对A 有:F f =m A a′. ③②代入③得,F f=6Lm ax.答案:F f=6Lm ax.方法归纳本题综合考查了受力分析、胡克定律、牛顿定律和回复力等概念,解题关键是合理选取研究对象,在不同的研究对象中回复力不同.此题最后要求把摩擦力F f与位移x的关系用函数来表示,要将物理规律与数学有机结合.自主广场我夯基我达标1.做简谐运动的弹簧振子,每次经过同一点a(a点在平衡位置和最大振幅之间)时()A.速度相同B.加速度相同C.动能相同D.势能相同思路解析:弹簧振子每次经过同一点a,振子的位移每次相同,回复力相同,则加速度相同;速度的大小相等,方向相反,动能相同,据机械能守恒定律可知,系统势能也相同.答案:BCD2.如图11-3-3甲所示,A、B两物体组成弹簧振子,在振动过程中,A、B始终保持相对静止,图乙中能正确反映振动过程中A受摩擦力F f与振子的位移x关系的图线应为()甲乙图11-3-3思路解析:在振动过程中A、B始终保持相对静止,可以把A、B看成整体,受力分析,设A、B的质量为m a、m b,弹簧的劲度系数为k,则有(m a+m b)a=-kx,a=-BAmmkx+,A受摩擦力F f=BAAmmm+kx,所以F f与位移的关系是F f=-BAAmmm+kx.答案:C3.如图11-3-4所示,弹簧一端固定在天花板上,另一端挂一质量为m的物体,今托住物体使弹簧没有发生形变然后将物体无初速度释放而做简谐运动,在物体从开始运动到最低点的过程中物体的重力势能____________,弹性势能____________,动能____________,(填“增大”或“减小”)而总的机械能____________.图11-3-4思路解析:固定在天花板上的弹簧做简谐运动,选地板为重力势能的零势面,物体从开始运动到最低点这一过程中,物体离地面的距离不断减小,则重力势能不断减小,弹簧的长度不断增大,则弹性势能不断增大,物体不断运动.到达平衡位置时,速度增大到最大,由平衡位置运动到最低点过程中,速度不断减小,所以动能先增大后减小,但总机械能不变.答案:减小增大先增大后减小不变4.如图11-3-5所示,质量为m的物块A放在木板B上,而B固定在竖直弹簧上.若使A随B 一起沿竖直方向做简谐运动而始终不脱离,则充当A的回复力的是_________,当A的速度达到最大值时,A对B的压力大小为____________.图11-3-5思路解析:对A受力分析,它受到重力和B对它的支持力,A和B一起做简谐运动,A的回复力是由重力和支持力的合力提供的,当回复力和重力平衡时,A的速度最大,即有f a=mg. 答案:重力和支持力的合力mg5.把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,它围绕平衡位置O在A、B间振动,如图11-3-6所示.下列结论正确的是()图11-3-6A.小球在O位置时,动能最大,加速度最小B.小球在A、B位置时,动能最大,加速度最大C.小球从A经O到B的过程中,回复力一直做正功D.小球从B到O的过程中,振动的能量不断增加思路解析:振子在以O为平衡位置,在A、B之间振动,在O点时,动能最大,回复力为零,加速度最小,在A、B位置时,动能最小,回复力最大,加速度最大.从A到O回复力做正功,从O到B回复力做负功,小球从B到O过程,弹簧弹力做功,弹簧振子的机械能不变.答案:A我综合我发展6.如图11-3-7所示,质量为m的砝码,悬挂在轻质弹簧的下端,砝码在竖直方向上自由振动.证明砝码做简谐运动.图11-3-7思路解析:做简谐运动物体受力特征f=-kx,因而只要证明回复力与位移大小成正比,方向相反就证明了该物体的振动是简谐运动.答案:设弹簧的劲度系数为k,当砝码在平衡位置时,弹簧伸长x0,此时,mg-kx0=0,即kx0=mg,如图甲所示,当砝码经过任意位置时,受力情况如图乙所示,此时弹簧的伸长量为x0+x,砝码所受合力为:f=mg-k(x0+x)=-kx,所以f=-kx( x是质点离开平衡位置的位移),f与x方向总相反,所以砝码的运动为简谐运动.7.一弹簧振子沿x轴振动,振幅为4 cm,振子的平衡位置位于x轴的O点,图11-3-8中的a、b、c、d为四个不同的振动状态,四点表示振子的位置,四点上的箭头表示运动的方向,图11-3-9中给出①②③④四条振动图线,可用于表示振子的振动图象()图11-3-8图11-3-9A.若规定状态a时t=0,则图象为①B.若规定状态b时t=0,则图象为②C.若规定状态c时t=0,则图象为③D.若规定状态d时t=0,则图象为④思路解析:a质点t=0时刻位移为3,由①振动图线可知a向x正方向运动,则选项A正确.B 质点t=0时刻位移为2,②振动图线不在位移2处,选项B错.c质点t=0时位移为-2,向x方向运动,选项C正确.d质点t=0时,位移为-4,与④振动图线一致,选项D正确.答案:ACD8.如图11-3-10所示,质量为m的密度计插在密度为ρ的液体中.已知密度计圆管的直径为d,试证明密度计经竖向推动后在竖直方向上的振动是简谐运动(液体对运动的阻力忽略不计).图11-3-10思路解析:密度计处于平衡位置时,受到的浮力Q=mg.当密度计有一向下的位移x 时,则受到的浮力Q′=Q+π(2d )2xρg.此时所受合力F=Q′-mg=Q′-Q=π(2d )2xρg,方向向上,和位移x 方向相反.当密度计有一向上位移x 时,则受到的浮力Q″=Q -π(2d )2xρg.此时所受合力F=mg-Q″=Q -Q″=π(2d )2xρg ,方向向下,和位移x 方向相反. 总之,密度计无论在什么位置,合力F 总等于π(2d )2xρg ,其方向总和位移x 方向相反.令k=π(2d )2ρg ,可得F=-kx.所以密度计经竖向推动后在竖直方向上的振动是简谐运动.。
第十一章机械振动第三节简谐运动的回复力和能量教学目标:(一)知识与技能掌握简谐运动的定义;了解简谐运动的运动特征;掌握简谐运动的动力学公式;了解简谐运动的位移、速度、加速度、能量变化规律。
(二)过程与方法引导学生通过实验观察,概括简谐运动的运动特征和简谐运动的能量变化规律,培养归纳总结能力。
(三)情感、态度与价值观结合旧知识进行分析,推理而掌握新知识,以培养其观察和逻辑思维能力。
二、教学难点1.重点是简谐运动的定义;2.难点是简谐运动的动力学分析和能量分析。
【提出问题】物体做匀变速直线运动时,所受合力_________,方向___________;物体做匀速圆周运动时,所受合力大小_______,方向与速度方向______并________,物体做简谐运动时,所受合力有什么特点?四:新课教学一、简谐运动的回复力1.振动形成的原因水平弹簧振子的振动如图所示,当把振子从静止的位置O拉开一小段距离到A再放开后,它为什么会在A-O-A'之间振动呢?(1)物体做机械振动时,一定受到指向__________的力,这个力的作用总能使物体回到中心位置,这个力叫__________。
(2)回复力是根据力的________ (选填“性质”或“效果”)命名的。
它可以是重力、弹力或摩擦力,或者几个力的合力,或某个力的分力。
(3)回复力的效果:把物体拉回到__________.当振子离开平衡位置后,振子所受的回复力总是使振子回到___________,这样不断进行下去,就形成了振动。
(4)方向:总是与位移x的方向相反,即总是指向__________.(5)表达式:F=________.即回复力与成正比___,“-”表明回复力与位移方向始终________,k是一个常数,由简谐运动系统决定.2.简谐运动如果质点所受的力与它偏离平衡位置位移的大小成________,并且总是指向___ ___,质点的运动就是简谐运动.引申:竖直振动的弹簧振子弹簧下面悬挂的钢球,试推导小球所受合力与它的位移关系。
课题简谐运动的回复力和能量探究热身一、简谐运动的回复力1.回复力(1)定义:把物体拉回到的力。
(2)方向:总是指向。
(3)表达式:F= 。
即回复力与物体的位移大小成,表明回复力与位移方向始终相反,k是一个常量,指弹簧的劲度系数。
(4)命名:回复力是根据力的命名的,回复力可以由某一个力提供,也可以是几个力的合力,还可以是某一力的合力,归纳起来回复力一定等于物体在振动方向上所受的合力。
2.简谐运动如果质点所受的力与它偏离平衡位置位移的大小成,并且总是指向,质点的运动就是简谐运动。
学习交流探究一:竖直方向的弹簧振子探究二:简谐运动的能量(完成课本P11《思考与讨论》)结论:简谐运动的能量是指振动系统的机械能,振动的过程就是和互相转化的过程。
(1)在最大位移处,能最大,能为零;(2)在平衡位置处,能最大,能最小。
典例分析例1 在简谐运动中,振子每次经过同一位置时,下列各组中描述振动的物理量总是相同的是()A.速度、加速度、动能B.加速度、回复力和位移AB OC .加速度、动能和位移D .位移、动能、回复力例2 当一弹簧振子在竖直方向上做简谐运动时,下列说法正确的( )A .振子在振动过程中,速度相同时,弹簧的长度一定相等B .振子从最低点向平衡位置运动过程中,弹簧弹力始终做负功C .振子在振动过程中的回复力由弹簧的弹力和振子的重力的合力提供D .振子在振动过程中,系统的机械能一定守恒自主检测1、关于简谐运动公式F=-kx 中的k 和x ,以下说法中正确的有( )A.k 是弹簧的劲度系数,x 是弹簧的形变量B.k 是回复力跟位移的比例常数,x 是物体离开平衡位置的位移C.对于弹簧振子系统,k 是弹簧的劲度系数,它表示弹簧自身的性质D.根据k=-F/x ,可以认为k 与x 成反比2、弹簧振子作简谐运动时,以下说法正确的是( )A .振子通过平衡位置时,回复力一定为零B .振子做减速运动,加速度却在增大C .振子向平衡位置运动时,加速度方向与速度方向相反D .振子远离平衡位置运动时,加速度方向与速度方向相反3、如图所示,是一弹簧振子,设向右方向为正,O 为平衡位置,则( )A .A →O 位移为负值,速度为正值B .O →B 时,位移为正值,加速度为负值C .B →O 时,位移为负值,速度为负值D .O →A 时,位移为负值,加速度为正值4、一个弹簧振子在光滑的水平面上做简谐运动,其中有两个时刻弹簧振子的弹力大小相等,但方向相反,则这两个时刻振子的( )A .速度一定大小相等,方向相反B .加速度一定大小相等,方向相反C .位移一定大小相等,但方向不一定相反D .以上三项都不一定大小相等方向相反课后练习教材P12 1 2 3 4。
简谐运动的回复力和能量(一)引入新课提问1:什么是机械振动?(物体在平衡位置附近做往复运动叫机械振动)提问2:振子做什么运动?(是一种最简单、最基本的机械振动,叫做简谐运动)前两节只研究做简谐运动的质点运动的特点,不涉及它所受的力,是从运动学的角度研究的。
本节要讨论它所受的力,是从动力学(力和运动的关系)研究简谐运动的特征,再研究能量变化的情况。
(二)新课教学请大家看书11页图,观察振子的运动,可以看出振子在做变速运动,请同学们分析一下振子做往复运动的原因是什么?可以先画出弹簧伸长时振子的受力分析,再分组讨论。
再让学生对弹簧被压缩时的振子进行受力分析。
弹簧振子所受合力有什么特点?教师总结:从两次受力分析中可以看出弹簧无论是被拉伸还是被压缩,其产生的弹力总是指向平衡位置O,其作用效果就是使振子回到平衡位置O点。
所以,我们根据弹力F的这一作用效果把这个力命名为回复力,其方向总是指向平衡位置。
一、简谐运动的回复力1、回复力(1)定义:振动物体偏离平衡位置后,所受到的使它回到平衡位置的力叫做回复力。
(2)回复力的理解○1方向特点:总是指向平衡位置○2作用效果:把物体拉到平衡位置○3来源:回复力是根据力的作用效果命名的,它可以是弹力,也可以是其他力,或几个力的合力,或某个力的分力。
继续观察振子的运动,并运用已有的知识来分析各时刻弹簧振子所受的回复力的情况,判断振子是否在做匀变速运动?学生答:不是。
教师总结:力学中学习过胡克定律F=kx,公式中的k值与弹簧的弹性强弱有关,x 是指弹簧长度的变化量。
在振动过程中x指的就是振动的位移。
但由于回复力的方向总是指向平衡位置而位移的方向总是由平衡位置指向末位置,两者方向相反,因此,回复力的公式为: F=-kx公式中负号表示回复力F与振动位移x的方向相反,但大小与位移x成正比。
当振子处于平衡位置时,位移X=0,所以回复力F=0。
2、 回复力的表达式:kx F -=理解:(1)“负号”表示回复力的方向与位移方向始终相反。
简谐运动的回复力和能量疱丁巧解牛知识·巧学一、简谐运动的回复力1.定义:振动物体偏离平衡位置后,所受到的使它回到平衡位置的力叫做回复力.回复力是根据力的效果命名的,它可以是一个力,也可以是多个力的合力,还可以由某个力的分力提供.例如:如图11-3-1,水平方向的弹簧振子,弹力充当回复力.如图11-3-2所示,竖直方向的弹簧振子弹力和重力的合力充当回复力.如图11-3-3,m 随M 一起振动,m 的回复力是静摩擦力.图11-3-1 图11-3-2 图11-3-3深化升华 回复力是根据力的作用效果命名的,它可以是弹力,也可以是其他力(包括摩擦力),或几个力的合力或某个力的分力.进行受力分析时,不要凭空多画一个力——回复力.(1)回复力的大小:与偏离平衡位置的位移大小成正比.(2)回复力的方向:总是指向平衡位置.联想发散 位移方向总是背离平衡位置,回复力方向总是指向平衡位置,所以回复力的方向总是与位移方向相反.(3)回复力的效果:总是使质点回到平衡位置.2.简谐运动的动力学特征回复力F=-kx,即回复力的大小跟位移大小成正比,“-”号表示回复力与位移的方向相反.深化升华 (1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,则质点的运动就是简谐运动.(2)回复力F=-kx 中的k 是比例系数,并非弹簧的劲度系数,其值由振动系统决定,对水平弹簧振子,回复力仅由弹簧弹力提供,k 即为劲度系数,由弹簧决定,与振幅无关,其单位是N/m.(3)回复力为零合外力不为零(如沿圆弧振动时,物体经平衡位置回复力为零,但合外力不为零).3.简谐运动的运动学特征:a=-mkx . 简谐振动是一种变加速的往复运动,“—”号表示加速度a 方向与位移x 方向相反.4.在简谐运动中,位移、回复力、加速度和速度的变化关系.如下表所示(参照图11-3-4):图11-3-4 振子的运动 A→O O→A′ A′→O O→A位移方向水平向左,不断减小方向水平向右,不断增大水平向右,不断减小水平向左,不断增大回复力方向水平向右,大小不断减小水平向左,不断增大水平向左,不断减小水平向右,不断增大加速度水平向右,不断减小水平向左,不断增大水平向左,不断减小水平向右,不断增大速度水平向右,不断增大水平向右,不断减小水平向左,不断增大水平向左,不断减小深化升华“端点”是运动的转折点,速度必定为零,平衡位置时速度最大.学法一得(1)振动中的位移x都是以平衡位置为起点的,方向总是从平衡位置指向末位置;(2)加速度a的变化与回复力的变化是一致的,位移、回复力、加速度三个物理量同步变化,与速度的变化步调相反.二、简谐运动的能量1.概述:简谐运动的能量:做简谐运动的物体在振动中经过某一位置时所具有的势能和动能之和,称为简谐运动的能量.2.做简谐运动的物体能量的变化规律:只有动能和势能的相互转化,机械能守恒.振动过程是一个动能和势能不断转化的过程.如图11-3-5所示的水平弹簧振子,振子在AB之间往复运动,在一个周期内的能量转化过程是:图11-3-5A→O弹力做正功,弹性势能转化为动能;O→B弹力做负功,动能转化为弹性势能;B→O弹力做正功,弹性势能转化为动能;O→A弹力做负功,动能转化为弹性势能.不考虑阻力,弹簧振子振动过程中只有弹力做功,在任意时刻的动能与势能之和不变,即机械能守恒.联想发散对简谐运动来说,一旦供给系统一定的能量,使它开始振动,它就以一定的振幅永不停息地持续振动,简谐运动是一种理想化的振动.3.简谐运动的机械能由振幅决定.简谐运动中的能量跟振幅有关,振幅越大,振动的能量越大.在简谐运动中,振动的能量保持不变,所以振幅保持不变,只要没有能量损耗,它将永不停息地振动下去,因此简谐运动又称等幅振动.要点提示实际运动都有一定的能量损耗,所以简谐运动是一种理想化的振动.深化升华振幅是描述振动强弱的物理量,也是简谐运动的物体能量大小的标志,是描述简谐运动能量的特征物理量.4.在振动一个周期内,动能和势能间完成两次周期性变化,经过平衡位置时动能最大,势能最小;经过最大位移处时,势能最大,动能最小.振动势能可以是重力势能(例如单摆),可以是弹性势能(例如水平方向振动的弹簧振子),也可以是重力势能和弹性势能之和(例如沿竖直方向振动的弹簧振子).深化升华和以前学习势能时一样都要选取零势能位置.我们约定振动势能以平衡位置为零势能位置.典题·热题知识点一简谐运动过程中基本物理量的变化例1弹簧振子在光滑水平面上做简谐运动,在振子向平衡位置运动的过程中( )A.振子所受的回复力逐渐增大B.振子的位移逐渐增大C.振子的速度逐渐减小D.振子的加速度逐渐减小解析:振子位移是指由平衡位置指向振动物体所在位置的位移,因而向平衡位置运动时位移逐渐减小,而回复力与位移成正比,故回复力也减小,由牛顿第二定律a=F/m得,加速度也减小,物体向着平衡位置运动时,回复力与速度方向一致,故物体的速度逐渐增大,正确答案选D.答案:D方法归纳分析回复力变化时,首先要弄清回复力的来源,是由哪些因素引起的,由哪些力构成,如本题是F=-kx.例2如图11-3-6所示为某一质点的振动图象,由图象可知在t1和t2两时刻,质点的速度v1、v2,加速度a1、a2的正确关系为( )图11-3-6A.v1<v2,方向相同B.v1<v2,方向相反C.a1>a2,方向相同D.a1>a2,方向相反解析:在t1时刻质点向下向平衡位置运动,在t2时刻质点向下远离平衡位置运动,所以v1与v2的方向相同,但由于在t1时刻质点离平衡位置较远,所以v1<v2,a1>a2;质点的加速度方向总是指向平衡位置的,因而可知在t1时刻加速度方向向下,在t2时刻加速度方向向上.正确选项为A、D.答案:AD巧解提示处理图象问题时一定要把图象还原为质点的实际振动过程来分析,图象不是振动问题的运动轨迹.知识点二简谐运动的能量例3如图11-3-7所示,一弹簧振子在A、B间做简谐运动,平衡位置为O,已知振子的质量为M,若振子运动到B处时将一质量为m的物体放在M的上面,且m和M无相对运动而一起运动,下述正确的是()图11-3-7A.振幅不变B.振幅减小C.最大动能不变D.最大动能减少解析:当振子运动到B点时,M的动能为零,放上m,系统的总能量为弹簧所储存的弹性势能E p,由于简谐运动过程中系统的机械能守恒,即振幅不变,故A选项正确,当M和m运动至平衡位置O 时,M 和m 的动能和即为系统的总能量,此动能最大,故最大动能不变,C 选项正确.答案:AC方法归纳 分析简谐运动的能量问题,要弄清运动质点的受力情况和运动的情况,弄清是什么能之间的转化及转化关系等.例4 做简谐运动的弹簧振子,振子质量为m ,最大速度为v ,则下列说法正确的是( )A.从某时刻算起,在半个周期的时间内,回复力做的功一定为零B.从某时刻算起,在半个周期的时间内,回复力做的功可能是零到21mv 2之间的某一个值 C.从某一时刻算起,在半个周期的时间内,速度变化量一定为零D.从某一时刻算起,在半个周期的时间内,速度变化量的大小可能是零到2v 之间的某一值 解析:振子在半个周期内刚好到达与初位置关于平衡位置对称的位置,两位置速度大小相等,故由动能定理知,回复力做的功一定为零,则A 选项正确,B 选项错误;但由于速度反向(初位置在最大位移处时速度均为零),所以在半个周期内速度变化量的大小为初速度大小的两倍,因此在半个周期内速度变化量大小应为0到2v 之间的某个值,则C 选项错,D 选项正确.答案:AD 方法归纳 简谐运动过程中回复力为变力,因此求回复力的功应选择动能定理;由于速度变化量与速度均为矢量,故计算时应特别注意方向.知识点三 简谐运动与力学的综合例5 如图11-3-8所示,一质量为M 的无底木箱,放在水平地面上,一轻质弹簧一端悬于木箱的上边,另一端挂着用细线连接在一起的两物体A 和B ,m A =m B =m ,剪断A 、B 间的细线后,A 做简谐运动,则当A 振动到最高点时,木箱对地面的压力为____________________.图11-3-8解析:本题考查简谐运动的特点及物体受力情况的分析.剪断细线前A 的受力情况: 重力:mg ,向下;细线拉力:F 拉=mg ,向下;弹簧对A 的弹力:F=2 mg ,向上.此时弹簧的伸长量为Δx=k F =kmg 2. 剪断细线后,A 做简谐运动,其平衡位置在弹簧的伸长量为Δx=k mg 处,最低点即刚剪断细线时的位置,离平衡位置的距离为k mg ,由简谐运动的特点知最高点离平衡位置的距离也为kmg ,所以最高点的位置恰好在弹簧的原长处,此时弹簧对木箱作用力为零,所以此时木箱对地面的压力为Mg.答案:Mg方法归纳 在一些力学综合题目的处理中,如果能充分考虑简谐运动的对称性,可收到事半功倍的效果.例6如图11-3-9所示,A 、B 叠放在光滑水平地面上,B 与自由长度为L 0的轻弹簧相连,当系统振动时,A 、B 始终无相对滑动,已知m A =3m ,m B =m ,当振子距平衡位置的位移x=20L 时系统的加速度为a ,求A 、B 间摩擦力F f 与位移x 的函数关系.图11-3-9解析:设弹簧的劲度系数为k ,以A 、B 整体为研究对象,系统在水平方向上做简谐运动,其中弹簧的弹力作为系统的回复力,所以对系统运动到距平衡位置20L 时有:k 20L =(m A m B a ,由此得k=08L ma . 当系统的位移为x 时,A 、B 间的静摩擦力为F f ,此时A 、B 具有共同加速度a′,对系统有:kx=(m A +m B )a′ ①k=08L ma ,a′=02L a x. ② 对A 有:F f =m A a′. ③②代入③得,F f =06L ma x. 答案:F f =06L ma x. 方法归纳 本题综合考查了受力分析、胡克定律、牛顿定律和回复力等概念,解题关键是合理选取研究对象,在不同的研究对象中回复力不同.此题最后要求把摩擦力F f 与位移x 的关系用函数来表示,要将物理规律与数学有机结合.问题·探究交流讨论探究问题 简谐运动图象有哪些应用?探究过程:张晴:可以确定振动物体在任一时刻的位移.李小鹏:确定振动的振幅.图象中最大位移的绝对值就是振幅.王冬:确定振动的周期和频率.振动图象上一个完整的正弦(或余弦)图形在时间轴上拉开的“长度”表示周期.刘霞:确定各时刻质点的振动方向.某时刻质点的振动方向的判断,可以根据下一时刻质点的位置进行判断.赵军:比较不同时刻质点加速度的大小和方向.加速度的大小可以根据位移的大小进行比较,方向始终指向平衡位置.探究结论:任一时刻的位移,振幅,周期;各时刻质点的振动方向;比较不同时刻质点加速度的大小和方向.思维发散探究问题 怎样判断一个振动是否为简谐运动?探究思路:分析一个振动是否为简谐运动,关键是判断它的回复力是否满足其大小与位移成正比,方向总与位移方向相反.证明思路为:确定物体静止时的位置——即平衡位置.考查振动物体在任一点受到回复力的特点是否满足:F=-kx.具体处理时可以先找力与位移大小关系,再说明方向关系,也可以先规定正方向同时考虑大小与方向关系.还要知道F=-kx 中的k 是个比例系数,是由振动系统本身决定的,不仅仅是指弹簧的劲度系数,关于这点,在学过本章的第四节“单摆”后可以理解得更清楚一些.证明一个振动是否是简谐运动,还可从运动学角度看其加速度a 是否满足a=-m kx ,或从位移与时间的关系是否符合正弦规律来判断.探究结论:方法一:(动力学角度)回复力是否满足其大小与位移成正比,方向总与位移方向相反.方法二:(运动学角度)1.从位移与时间的关系看是否符合正弦规律;2.看位移时间图象是否为正弦曲线.。
高二物理教学案例:简谐运动回复力和能量引言简谐运动是物理学中非常重要的一种运动形式,许多自然现象和物理现象都可归纳为简谐运动。
本文将以高二物理学习的学生为对象,讲解如何教授简谐运动的回复力和能量。
回复力简谐运动的回复力是指物体偏离平衡位置时产生的恢复力,使物体向平衡位置运动。
简谐运动的回复力符合胡克定律,即回复力与物体偏离平衡位置的距离成正比。
其中,胡克定律的公式为F=−kx,其中F表示回复力,k表示弹簧的弹性系数,x表示物体偏离平衡位置的距离。
在教学中,可以通过以下两种方式来帮助学生理解简谐运动的回复力:1.实验演示学生可以通过实验演示了解简谐运动的回复力。
具体操作方法是:取一根弹簧,将其固定在桌子上,取一个质量较小的球,并将其挂在弹簧下方,使球和弹簧处于平衡位置。
然后,将球向下拉出一段距离,再松手让球自由弹起,记录球弹起的高度和弹起的时间。
重复操作多次,并记录数据。
通过分析数据可以得到能够表示弹簧回复力特性的胡克定律。
2.数学模拟除了实验演示,数学模拟也是一种较为直观的方式。
可以利用计算机编写简谐运动的模拟程序,通过可视化的方式展示简谐运动的回复力特性,帮助学生更好地理解简谐运动的回复力。
能量简谐运动的能量以机械能为主,即由回复力所产生的能量和物体后势能的总和。
简谐运动的总机械能保持不变,表现为动能和势能之间的相互转换。
在教学中,可以通过以下两种方式来帮助学生理解简谐运动的能量:1.数学公式法学生可以通过胡克定律推导出简谐运动的回复力,进而计算机械能的大小。
具体方式是:先利用胡克定律求出回复力,然后根据运动学知识计算出物体的速度和加速度,再结合引力、弹性势能、动能等因素,求出物体的总机械能。
通过解题可以让学生更好地理解简谐运动的能量。
2.实验观测法除了计算,实验观测同样是一种重要的教学方式。
例如同样通过一个质量较小的球的实验,可以量化弹簧回复力、势能、机械能的变化规律,进一步理解简谐运动的能量规律,从而提高学生的实验能力和科学思维能力。
课时11.3 简谐运动的回复力和能量1.理解回复力的概念,会根据回复力的特点判断物体是否做简谐运动。
2.会用动力学的方法分析简谐运动中位移、速度、回复力和加速度的变化规律。
3.会用能量守恒的观点分析水平弹簧振子中动能、势能、总能量的变化规律。
重点难点:回复力的特点、简谐运动的动力学分析及能量分析。
教学建议:前两节研究的是做简谐运动的质点的运动特点,不涉及它所受的力以及能量转换的情况,是从运动学的角度研究的。
而本节要讨论它所受的力和能量转换的情况,是从动力学和能量的角度研究的。
教学中要讲清回复力是根据振动物体所受力的效果来命名的,振子的惯性使振子远离平衡位置时,回复力总是使振子回到平衡位置,正是这一对矛盾才使振子形成振动。
从能量守恒的角度对简谐运动进行分析时,只限于对水平弹簧振子。
导入新课:很多同学都喜欢荡秋千,你思考过吗,为什么一次次荡起的秋千还会一次次回到最低点?又为什么荡秋千时能荡得很高?1.简谐运动的动力学特征(1)回复力的方向跟振子偏离平衡位置的位移方向①相反(填“相同”或“相反”),总是指向②平衡位置,它的作用是使振子能③回到平衡位置。
(2)水平放置的弹簧振子做简谐运动时,其回复力可表示为④F=-kx,式中k为比例系数,也是弹簧的劲度系数;负号表示⑤力F与位移x方向相反。
(3)如果质点受到的力与它偏离平衡位置的位移大小成⑥正比,并且总指向⑦平衡位置,该质点的运动就是简谐运动。
2.简谐运动的能量的特征(1)弹簧振子的速度在不断变化,因而它的⑧动能在不断变化;弹簧的形变量在不断变化,因而它的⑨势能在不断变化。
(2)理论证明:若忽略能量损耗,在弹簧振子运动的任意位置,系统的⑩动能与势能之和都是一定的,与机械能守恒定律相一致。
(3)实际运动都有一定的能量损耗,所以简谐运动是一种理想化模型。
1.回复力是按性质命名的力还是按效果命名的力?解答:回复力是按效果命名的力。
2.弹簧振子在什么位置动能最大?在什么位置势能最大? 解答:在平衡位置动能最大,在最大位移处势能最大。
2.3 简谐运动的回复力和能量【教学目标】(一)知识与技能1、理解简谐运动的运动规律,掌握在一次全振动过程中位移、回复力、加速度、速度变化的规律。
2、掌握简谐运动回复力的特征。
3、对水平的弹簧振子,能定量地说明弹性势能与动能的转化。
(二)过程与方法1、通过对弹簧振子所做简谐运动的分析,得到有关简谐运动的一般规律性的结论,使学生知道从个别到一般的思维方法。
2、分析弹簧振子振动过程中能量的转化情况,提高学生分析和解决问题的能力。
(三)情感、态度与价值观1、通过物体做简谐运动时的回复力和惯性之间关系的教学,使学生认识到回复力和惯性是矛盾的两个对立面,正是这一对立面能够使物体做简谐运动。
2、简谐运动过程中能量的相互转化情况,对学生进行物质世界遵循对立统一规律观点的渗透。
【教学重点】1、简谐运动的回复力特征及相关物理量的变化规律。
2、对简谐运动中能量转化和守恒的具体分析。
【教学难点】1、物体做简谐运动过程中位移、回复力、加速度、速度等变化规律的分析总结。
2、关于简谐运动中能量的转化。
【教学方法】实验演示、讨论与归纳、推导与列表对比、多媒体模拟展示【教学用具】CAI课件、水平弹簧振子【教学过程】(一)引入新课教师:前面两节课我们从运动学的角度研究了简谐运动的规律,不涉及它所受的力。
我们已知道:物体静止或匀速直线运动,所受合力为零;物体匀变速直线运动,所受合力为大小和方向都不变的恒力;物体匀速圆周运动,所受合力大小不变,方向总指向圆心。
那么物体简谐运动时,所受合力有何特点呢?这节课我们就来学习简谐运动的动力学特征。
(二)进行新课1.简谐运动的回复力(1)振动形成的原因(以水平弹簧振子为例)问题:(如图所示)当把振子从它静止的位置O拉开一小段距离到A再放开后,它为什么会在A-O-A'之间振动呢?分析:物体做机械振动时,一定受到指向中心位置的力,这个力的作用总能使物体回到中心位置,这个力叫回复力。
回复力是根据力的效果命名的,对于水平方向的弹簧振子,它是弹力。
第11章第3节简谐运动的回复力和能量【学习目标】1.掌握简谐运动的动力学特征,明确回复力的概念。
2.知道简谐运动是一种没有能量损耗的理想情况。
3.理解简谐运动过程中位移、回复力、加速度、速度、动能、势能的变化情况。
4.知道什么是单摆。
5.理解摆角很小时单摆的振动是简谐运动。
6.知道单摆的周期跟什么因素有关,了解单摆的周期公式,并能用来进行有关的计算。
知识回顾:1.上一讲课说的弹簧振子的振子为什么围绕着中心点来回往复的运动?答:因为它受到了指向中心的回复力。
2.振子所作的运动是不是匀变速运动呢?答:不是,因为它受到的力是变力。
3.简谐运动中涉及的我们学过的那些物理量?答:位移、回复力、加速度、速度、动能、势能知识点一、简谐运动的回复力、能量回复力:物体振动时受到的回复力的方向总是指向平衡位置,即总是要把物体拉回到平衡位置的力称为回复力.F kx-.要点诠释:(1)负号表示回复力的方向是与位移方向相反.(2)k为F与x的比例系数,对于弹簧振子,k为劲度系数.(3)对水平方向振动的弹簧振子,回复力由弹簧的弹力提供;对竖直方向振动的弹簧振子,回复力由弹簧的弹力与重力两力的合力提供.(4)物体做简谐运动到平衡位置时,回复力为0(但合力可能不为0).(5)回复力大小随时间按正弦曲线变化.简谐运动的能量:(1)弹簧振子运动的任意位置,系统的动能与势能之和都是一定的,即振动过程中机械能守恒.(2)水平方向的振子在平衡位置的机械能以动能的形式出现,势能为零;在位移最大处势能最大,动能为零.(3)简谐运动中系统的动能与势能之和称为简谐运动的能量,即212E kA =。
(4)简谐运动中的能量跟振幅有关,振幅越大,振动的能 量越大.(5)在振动的一个周期内,动能和势能间完成两次周期性变化,经过平衡位置时动能最大,势能最小;经过最大位移处时,势能最大,动能最小.简谐运动的特征物体做简谐运动的三个特征: (1)振动图像是正弦曲线; (2)回复力满足条件F kx =-;(3)机械能守恒. 简谐运动的判定方法:(1)简谐运动的位移一时间图像是正弦曲线或余弦曲线.(2)故简谐运动的物体所受的力满足F kx =-,即回复力F 与位移x 成正比且方向总相反.(3)用F kx =-判定振动是否是简谐运动的步骤: ①对振动物体进行受力分析;②沿振动方向对力进行合成与分解;③找出回复力,判断是否符合F kx=-.简谐运动的运动特点:简谐运动的加速度分析方法:简谐运动是一种变加速的往复运动,由ka xm=-知其加速度周期性变化,“-”表示加速度的方向与振动位移x的方向相反,即总是指向平衡位置,a的大小跟x成正比.简谐运动的运动特点:物体位置位移x回复力F加速度a速度v势能pE动能kE方向大小方向大小方向大小方向大小平衡位置O 零零零mv零kmE最大位移处M 指向MA指向OkA指向OkAm零pmE零O M →指向A→零指向kA→零指向kAm→零指向mv→零pmE→零kmE→零M O O M M O → 指向 M A →零 指向O kA →零 指向O kA m→零 指向Om v →零 pm E →零 km E →零通过上表不难看出:位移、回复力、加速度三者同步变化,与速度的变化相反.通过上表可看出两个转折点:平衡位置O 点是位移方向、加速度方向和回复力方向变化的转折点;最大位移处是速度方向变化的转折点.还可以比较出两个过程的不同特点,即向平衡位置O 靠近的过程及远离平衡位置O 的过程的不同特点:靠近O 点时速度大小变大,远离O 点时位移、加速度和回复力大小变大 弹簧振子在光滑斜面上的振动:光滑斜面上的小球连在弹簧上,把原来静止的小球沿斜面拉下一段距离后释放,小球的运动是简谐运动.分析如下:如图所示,小球静止时弹簧的伸长量为0sin mg x kθ=, 往下拉后弹簧相对于静止位置伸长x 时,物体所受回复力()0sin F k x x mg kx θ=++=--.由此可判定物体是做简谐运动的.例题1.如图所示,水平面的轻弹簧一端与物体相连,另一端固定在墙上P 点,已知物体的质量为 2.0 kg m =,物体与水平面间的动摩擦因数0.4μ=,弹簧的劲度系数200 N/m k =.现用力F 拉物体,使弹簧从处于自然状态的O 点由静止开始向左移动10 cm ,这时弹簧具有弹性势能1.0 J p E =,物体处于静止状态.若取210m/s g =,则撤去外力F 后( ).A .物体向右滑动的距离可以达到12.5 cmB .物体向右滑动的距离一定小于12.5 cmC .物体回到O 点时速度最大D .物体到达最右端时动能为0,系统机械能不为0【答案】B 、D【解析】如图所示,物体m 由最大位移处释放,在弹力作用下向右加速,由于受滑动摩擦力的作用,物体向右运动时的平衡位置应在O 点左侧O '处,由平衡条件0mg kx μ= 得00.04m 4cm mgx kμ===,即4 cm O D ='由简谐运动的对称性可知到达O 点右侧 6 cm O A =''的A '点时物体速度减小为零,即12 cm 12.5 cm AA =<',A 项错误,B 项正确;在平衡位置O '处速度最大,C 项错误;物体到达最右端时动能为零,弹簧处于压缩状态,系统机械能不为零,故D 项正确.课堂练习一:如图所示,水平面上质量相等的两木块A 、B 用一轻弹簧相连,整个系统处于静止状态.t=0时刻起用一竖直向上的力F 拉动木块,使A 向上做匀加速直线运动.t 1时刻弹簧恰好恢复原长,t 2时刻木块B 恰好要离开水平面.以下说法正确的是( )A .在0~t 2时间内,拉力F 与时间t 成正比B .在0~t 2时间内,拉力F 与A 位移成正比C .在0~t 2间间内,拉力F 做的功等于A 的机械能增量D .在0~t 1时间内,拉力F 做的功等于A 的动能增量【思路点拨】以木块A 为研究对象,分析受力情况,根据牛顿第二定律得出F 与A 位移x 的关系式,再根据位移时间公式,得出F 与t 的关系.根据功能关系分析拉力做功与A 的机械能增量关系.【答案】C【解析】A 、B 设原来系统静止时弹簧的压缩长度为x 0,当木块A 的位移为x 时,弹簧的压缩长度为(x 0─x),弹簧的弹力大小为k (x 0─x),根据牛顿第二定律得:F+ k (x 0─x)─mg=ma 得到:F=kx─kx 0+ma+mg , 又kx 0=mg ,则得到:F=kx+ma可见F 与x 是线性关系,但不是正比. 由212x at =得:212F k at ma =⋅+,F 与t 不成正比.故AB 错误. 据题t=0时刻弹簧的弹力等于A 的重力,t 2时刻弹簧的弹力等于B 的重力,而两个物体的重力相等,所以t=0时刻和t 2时刻弹簧的弹力相等,弹性势能相等,根据功能关系可知,在0~t 2时间内,拉力F 做的功等于A 的机械能增量,故C 正确.根据动能定理可知:在0~t 1时间内,拉力F 做的功与弹力做功之和等于A 的动能增量,故D 错误.【总结升华】对于匀变速直线运动,运用根据牛顿第二定律研究力的大小是常用的思路.分析功能关系时,要注意分析隐含的相等关系,要抓住t=0时刻和t 2时刻弹簧的弹性势能相等进行研究. 课堂练习二:如图所示,质量为m 的物块A 放置在质量为M 的物块B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐运动,振动过程中A B 、之间无相对运动,设弹簧的劲度系数为k ,当物块离开平衡位置的位移为x 时,A B 、间摩擦力的大小等于( )A .0B .kxC .mkx MD .mkx M m+【答案】D 课堂练习三:如图所示,一质量为M 的无底木箱,放在水平地面上,一轻质弹簧一端悬于木箱的上边,另一端挂着用细线连接在一起的两物体A 和B ,A B m m m ==.剪断A B 、间的细线后,A 做简谐运动,则当A 振动到最高点时,木箱对地面的压力为________。
高二物理教学案例:简谐运动回复力和能量
★教案频道为网友整理的《高二物理教学案例:简谐运动回复力和能量》,希望对大家有所帮助!
简谐运动的回复力和能量
一、教学目的
1.掌握简谐运动的定义;了解简谐运动的运动特征;掌握简谐运动的动力学公式;了解简谐运动的能量变化规律。
2.引导学生通过实验观察,概括简谐运动的运动特征和简谐运动的能量变化规律,培养归纳总结能力。
3.结合旧知识进行分析,推理而掌握新知识,以培养其观察和逻辑思维能力。
二、教学难点
1.重点是简谐运动的定义;
2.难点是简谐运动的动力学分析和能量分析。
三、教具:弹簧振子,挂图。
四、主要教学过程
(一)引入新课
提问1:什么是机械振动?
答:物体在平衡位置附近做往复运动叫机械振动。
提问2:振子做什么运动?
日常生活中经常会遇到机械振动的情况:机器的振动,桥梁的振
动,树枝的振动,乐器的发声,它们的振动比较复杂,但这些复杂的振动都是由简单的振动的组成的,因此,我们的研究仍从最简单、最基本的机械振动开始。
刚才演示的就是一种最简单、最基本的机械振动,叫做简谐运动。
提问3:过去我们研究自由落体等匀变速直线运动是从哪几个角度进行研究的?
今天,我们仍要从运动学(位移、速度、加速度)研究简谐运动的运动性质;从动力学(力和运动的关系)研究简谐运动的特征,再研究能量变化的情况。
(二)新课教学
(第二次演示竖直方向的弹簧振子)
提问4:大家应明确观察什么?(物体)
提问5:上述四个物理量中,哪个比较容易观察?
提问6:做简谐运动的物体受的是恒力还是变力?力的大小、方向如何变?
小结:简谐运动的受力特点:回复力的大小与位移成正比,回复力的方向指向平衡位置
提问7:简谐运动是不是匀变速运动?
小结:简谐运动是变速运动,但不是匀变速运动。
加速度时,速度等于零;速度时,加速度等于零。
提问8:从简谐运动的运动特点,我们来看它在运动过程中能量如何变化?让我们再来观察。
提问9:振动前为什么必须将振子先拉离平衡位置?(外力对系统做功)
提问10:在A点,振子的动能多大?系统有势能吗?
提问11:在O点,振子的动能多大?系统有势能吗?
提问12:在D点,振子的动能多大?系统有势能吗?
提问13:在B,C点,振子有动能吗?系统有势能吗?
小结:简谐运动过程是一个动能和势能的相互转化过程。
(三)总结:
(四)布置作业:。