第三章 流体动力学理论基础
- 格式:ppt
- 大小:4.10 MB
- 文档页数:120
流体动力学基础理论流体动力学是研究流体运动规律及其物理现象的学科,其基础理论包括流体静力学和流体动力学两个部分。
本文将围绕流体动力学的基础理论展开论述,包括主要概念、基本方程和典型应用等内容。
一、流体动力学概述流体动力学是研究流体在受力作用下的运动规律的学科。
在研究流体动力学时,通常将流体视为连续分布的介质,分析其运动状态和受力情况。
流体动力学的研究对象包括气体、液体和等离子体等。
流体动力学的基本假设有两个,即连续介质假设和边界层假设。
连续介质假设认为流体可以被看作是连续分布的介质,从而可以用连续函数来描述其物理量。
边界层假设认为流体与物体表面之间存在一层边界层,该层内的流体性质发生较大变化,而在该层外的流体相对稳定。
二、基本方程流体动力学的基本方程包括质量守恒方程、动量守恒方程和能量守恒方程三个方程。
这三个方程构成了描述流体运动规律的基本框架。
1. 质量守恒方程质量守恒方程描述了流体质量的变化情况,其数学表达式为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ表示流体的密度,t表示时间,v表示流体的速度,∇·表示散度运算符。
质量守恒方程表明在流体中,质量的增减与流体的速度有关,通过质量守恒方程可以研究流体的质量流动和密度分布情况。
2. 动量守恒方程动量守恒方程描述了流体运动的动力学规律,其数学表达式为:ρ(∂v/∂t + v·∇v) = -∇p + ∇·τ + ρg其中,p表示流体的压力,τ表示流体的黏性应力,g表示重力加速度。
动量守恒方程表明流体的运动受到压力、黏性应力和重力的综合作用,通过动量守恒方程可以研究流体的速度场和受力情况。
3. 能量守恒方程能量守恒方程描述了流体能量的变化情况,其数学表达式为:ρCv(∂T/∂t + v·∇T) = ∇·(κ∇T) + Q其中,Cv表示流体的定压比热容,T表示流体的温度,κ表示流体的热导率,Q表示流体受到的热源项。
第三章 流体动力学理论基础8 学时通过讲课使学生熟练掌握恒定总流的连续性方程、伯努利方程和动量方程及其综合应用;理解研究流体运动的若干基本概念、流体的连续性微分方程与理想流体的欧拉运动微分方程及其沿流线的积分;了解描述流体运动的两种方法。
恒定总流的连续性方程、伯努利方程和动量方程及其综合应用。
用欧拉法描述流体运动的概念、从不同角度对流体流动的划分以及伯努利方程和动量方程在应用时,如何正确的选择过流断面和控制体。
以传统教学方式为主要手段,以多媒体教学为辅助教学手段,即将教学中所需图表及与课程相关的工程实例等内容,采用多媒体形式展示。
讲课为主,提问、课堂讨论为辅。
回顾上次课堂教学所讲的重点内容;导引本次课堂教学的主要内容及进行讲解,在讲解过程中,针对具体问题对学生进行提问或作为问题让学生课后思考;对本次课堂教学内容进行小结。
转讲稿页。
zy x xu x x u u x x x x u u x x m x xx xx x d d d )(d 21)(d 21(d 21)(d 21(∂∂−=∂∂+∂∂+−∂∂−∂∂−=Δρρρρρ方向: 方向: 据质量守恒定律得0)()(=∂∂+∂∂+∂∂+∂∂zu y u x u t zy x ρρρ 上式即为流体运动的连续性微分方程的一般形式。
zy x yu m y y d d d )(∂∂−=Δρz y x zu m z zd d d )(∂∂−=Δρ因控制体不随时间变化,故式中第一项∫∫∂∂=∂∂V V dV dV ρρt t 据数学分析中的高斯定理,式中第二项∫∫=⋅∇Vd dV )(An A u ρρu故连续性积分方程的一般形式:0d dV V =+∂∂∫∫A n A u t ρρ三.恒定不可压缩总流的连续性方程对于恒定不可压缩(ρ=常数)总流,连续性积分方程可简化为:∫=AnA u 0d总流控制体,在其侧面上u n =0,故有∫∫=+−120d d 2211A AA u A u 应用积分中值定理,可得Q A v A v ==2211[解] 据1→2建立总流的伯努利方程,有W h gv H +++=++200002α得 ()W h H gv −=α2()W h H gd Av Q −==απ242讨论:在理想流体情况下,h W =0,则gH d Q 242π=、d 不变情况下,若欲使Q 增加,可采取什么措施?时刻系统的动量[]tV∫dV u ρ时刻系统的动量]∫Δ+Δ−Δ+t A u t n A tt d dV1u u ρρ]∫Δ+Δ+A u t n A tt d dVVu u ρρ(讲稿页)第 13 页[解] 取图示控制体,并进行受力分析建立xoy 坐标系在x 方向建立动量方程(取0.121==ββ)()1221v v Q F P P −=′−−ρ式中: kN bh h P 5.292111=⋅⋅=γ。
第3章 流体动力学基础教学提示:流体力学是研究流体机械运动的一门学科,与理论力学中分析刚体运动的情况相似。
如研究的范围只限于流体运动的方式和状态,则属于流体运动学的范围。
如研究的范围除了流体运动的方式和状态以外,还联系到流体发生运动的条件,则属于流体动力学的范围。
前者研究流体运动的方式和速度、加速度、位移等随空间与时间的变化,后者研究引起运动的原因和流体作用力、力矩、动量和能量的方法。
如前所述,流体力学的研究方法是基于连续介质体系的,重点研究由流体质点所组成的连续介质体系运动所产生的宏观效果,而不讨论流体分子的运动。
与处于相对平衡状态下的情况不同,处于相对运动状态下的实际流体,粘滞性将发生作用。
由于流体具有易流动性和粘滞性的影响,因此流体力学的研究方法与固体力学有明显的区别。
教学要求:流体运动的形式虽然多种多样的,但从普遍规律来讲,都要服从质量守恒定律、动能定律和动量定律这些基本原理。
在本章中,我们将阐述研究流体流动的一些基本方法,讨论流体运动学方面的一些基本概念,应用质量守恒定律、牛顿第二运动定律、动量定理和动量矩定理等推导出理想流体动力学中的几个重要的基本方程:连续性方程、欧拉方程、伯努利方程、动量方程、动量矩方程等,并举例说明它们的应用。
3.1 流体运动的描述方法要研究流体运动的规律,就要建立描述流体运动的方法。
在流体力学中,表达流体的运动形态和方式有两种不同的基本方法:拉格朗日法和欧拉法。
3.1.1 拉格朗日法拉格朗日法是瑞士科学家欧拉首先提出的,法国科学家J. L.拉格朗日作了独立的、完整的表述和具体运用。
该方法着眼于流体内部各质点的运动情况,描述流体的运动形态。
按照这个方法,在连续的流体运动中,任意流体质点的空间位置,将是质点的起始坐标),,(c b a (即当时间t 等于起始值0t 时的坐标)以及时间t 的单值连续函数。
若以r 代表任意选择的质点在任意时间t 的矢径,则: ),,,(t c b a r r = (3-1) 式中,r 在x 、y 、z 轴上的投影为x 、y 、z ;a 、b 、c 称为拉格朗日变量。