流体动力学理论基础第四章
- 格式:ppt
- 大小:4.15 MB
- 文档页数:133
《流体力学》教学大纲一、课程性质与任务1.课程性质:本课程是安全工程专业的主要专业基础课程之一。
该课程的主要任务是使学生掌握流体运动的一般规律和有关的基本概念、基本原理、基本方法和一定的数值计算及实验技能,注意培养学生较好地分析和解决本专业中涉及流体力学问题的能力,为学习专业课程、从事专业技术工作或进行科学研究打下坚实的基础2.课程任务:本课程的目的是为安全工程专业学生提供学习专业课之前的重要的基础理论课程。
通过本课程的学习,要求学生能够掌握流体力学的一些基本原理,并要求能够学会理论联系实际分析和解决工程中各种流体力学方面的有关问题。
二、课程教学内容及要求注重基本理论、基本概念、基本方法的理解和掌握,只有这样才能对专业范围内的流体力学现象做出合乎实际的定性判断,进行足够精确的定量估计,正确地解决专业范围内的流体力学的设计和计算问题。
第一章绪论 (2学时)·流体力学的研究对象、任务和方法,流体力学的发展概况·作用在运动流体上的力,流体的主要力学性质,流体力学模型。
基本要求:掌握质量力、表面力、粘滞力的物理含义,研究流体力学的主要方法,流体力学模型。
重点:粘滞力的物理含义、牛顿内摩擦定律、流体的力学模型。
难点:惯性力是质量力,牛顿内摩擦定律的应用计算。
第二章流体静力学(4学时)·流体的静压强及其特性、流体静压强的分布规律、压强的计算基准和量度单位·流体平衡微分方程、液体的相对平衡·作用于平面的液体压力、作用于曲面的液体压力基本要求:流体静压强的概念、特性、分布规律;两种计算基准、量度单位;液柱测压计;作用在平面上的流体压力;作用在曲面上的流体压力;流体的平衡微分方程和相对平衡。
重点:等压面的概念,流体静压强的计算,作用在平面上的流体压力的计算。
难点:绝对压强和相对压强,作用在平面上的流体压力的计算,流体的平衡微分方程和相对平衡。
第三章流体运动学(2学时)·描述流体运动的两种方法,恒定流动和非恒定流动、流线和迹线、一元流动模型·连续性方程基本要求:描述流体运动的两种方法,基本概念,流动分类;连续性方程,重点:流线和迹线、一元流动模型难点:流线和迹线的区别,第四章流体动力学基础(6学时)流体运动微分方程、元流伯努利方程、总流能量方程及其应用·总水头线和测压管水头线总流动量方程基本要求:连续性方程,能量方程及其应用,动量方程,总水头线和测压管水头线,气流的能量方程,总压线和全压线。
第一章,绪论1、质量力:质量力是作用在流体的每一个质点上的力。
其单位是牛顿,N。
单位质量力:没在流体中M点附近取质量为d m的微团,其体积为d v,作用于该微团的质量力为dF,则称极限lim(dv→M)dF/dm=f,为作用于M点的单位质量的质量力,简称单位质量力。
其单位是N/kg。
2、表面力:表面力是作用在所考虑的或大或小得流体系统(或称分离体)表面上的力。
3、容重:密度ρ和重力加速度g的乘积ρg称容重,用符号γ表示。
4、动力黏度μ:它表示单位速度梯度作用下的切应力,反映了黏滞性的动力性质。
其单位为N/(㎡·s),以符号Pa·s表示。
运动黏度ν:是单位速度梯度作用下的切应力对单位体积质量作用产生的阻力加速度。
国际单位制单位㎡/s。
动力黏度μ与运动黏度ν的关系:μ=ν·ρ。
5、表面张力:由于分子间的吸引力,在液体的自由表面上能够承受的极其微小的张力称为表面张力。
毛细管现象:由于表面张力的作用,如果把两端开口的玻璃细管竖立在液体中,液体就会在细管中上升或下降h高度的现象称为毛细管现象。
6、流体的三个力学模型:①“连续介质”模型;②无黏性流体模型;③不可压缩流体模型。
(P12,还需看看书,了解什么是以上三种模型!)。
第二章、流体静力学1、流体静压强的两个特性:①其方向必然是沿着作用面的内法线方向;②其大小只与位置有关,与方向无关。
2、a流体静压强的基本方程式:①P=Po+rh,式中P指液体内某点的压强,Pa(N/㎡);Po指液面气体压强,Pa(N/㎡);r指液体的容重,N/m³;h指某点在液面下的深度,m;②Z+P/r=C(常数),式中Z指某点位置相对于基准面的高度,称位置水头;P/r指某点在压强作用下沿测压管所能上升的高度,称压强水头。
两水头中的压强P必须采用相对压强表示。
b流体静压强的分布规律的适用条件:只适用于静止、同种、连续液体。
3、静止均质流体的水平面是等压面;静止非均质流体(各种密度不完全相同的流体——非均质流体)的水平面是等压面,等密度和等温面。
流体动力学基础理论流体动力学是研究流体运动规律及其物理现象的学科,其基础理论包括流体静力学和流体动力学两个部分。
本文将围绕流体动力学的基础理论展开论述,包括主要概念、基本方程和典型应用等内容。
一、流体动力学概述流体动力学是研究流体在受力作用下的运动规律的学科。
在研究流体动力学时,通常将流体视为连续分布的介质,分析其运动状态和受力情况。
流体动力学的研究对象包括气体、液体和等离子体等。
流体动力学的基本假设有两个,即连续介质假设和边界层假设。
连续介质假设认为流体可以被看作是连续分布的介质,从而可以用连续函数来描述其物理量。
边界层假设认为流体与物体表面之间存在一层边界层,该层内的流体性质发生较大变化,而在该层外的流体相对稳定。
二、基本方程流体动力学的基本方程包括质量守恒方程、动量守恒方程和能量守恒方程三个方程。
这三个方程构成了描述流体运动规律的基本框架。
1. 质量守恒方程质量守恒方程描述了流体质量的变化情况,其数学表达式为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ表示流体的密度,t表示时间,v表示流体的速度,∇·表示散度运算符。
质量守恒方程表明在流体中,质量的增减与流体的速度有关,通过质量守恒方程可以研究流体的质量流动和密度分布情况。
2. 动量守恒方程动量守恒方程描述了流体运动的动力学规律,其数学表达式为:ρ(∂v/∂t + v·∇v) = -∇p + ∇·τ + ρg其中,p表示流体的压力,τ表示流体的黏性应力,g表示重力加速度。
动量守恒方程表明流体的运动受到压力、黏性应力和重力的综合作用,通过动量守恒方程可以研究流体的速度场和受力情况。
3. 能量守恒方程能量守恒方程描述了流体能量的变化情况,其数学表达式为:ρCv(∂T/∂t + v·∇T) = ∇·(κ∇T) + Q其中,Cv表示流体的定压比热容,T表示流体的温度,κ表示流体的热导率,Q表示流体受到的热源项。
流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。
古时中国有大禹治水疏通江河的传说;秦朝李冰父子带领劳动人民修建的都江堰,至今还在发挥着作用;大约与此同时,古罗马人建成了大规模的供水管道系统等等。
流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。
建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。
此后千余年间,流体力学没有重大发展。
15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。
但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。
流体力学的主要发展:17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。
他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。
使流体力学开始成为力学中的一个独立分支。
但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。
之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。
欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。
第一章 流体的基本概念质量力:f X i Yj Z k =++表面力:0lim =limA A P T p AAτ∆→∆→∆∆=∆∆/w w g s γργγρρ== =/体积压缩系数:111dV d V dpdp Kρβρ=-==温度膨胀系数: 11dV d V dTdTραρ==-pRT ρ= =du du T Adydyμμτμνρ= =第二章 流体静力学欧拉平衡微分方程:()dp Xdx Ydy Zdz ρ=++0p p h γ=+ vv a v p p p p p h γ'=-=-=12sin A p l Kl A γα⎛⎫=+= ⎪⎝⎭匀加速水平直线运动中液体的平衡:0arctan s a a ap p x z ax gz C z x g g g γα⎛⎫⎛⎫=+--+==- ⎪ ⎪⎝⎭⎝⎭=匀角速度旋转运动容器中液体的平衡:2222220222s r r rp p z z C z g g g ωωωγ⎛⎫=+--== ⎪⎝⎭静止液体作用于平面壁上的总压力:1.解析法:C c c D C C J P h A p A y y y Aγ===+2.图解法:静水总压力大小等于压强分布图的体积,其作用线通过压强分布图的形心,该作用线与受压面的交点即是压力中心D 。
第三章 流体运动学基础欧拉法:速度为()()(),,,,,,,,,x x y y z z u u x y z t u u x y z t u u x y z t ⎧=⎪=⎨⎪=⎩加速度为x x x x x xx y z y y y y y y x y z z z z z zz x y zdu u u u u a u u u dt t x y zdu u u u u a u u u dt t x y z du u u u u a u u u dt t x y z ∂∂∂∂⎧==+++⎪∂∂∂∂⎪∂∂∂∂⎪==+++⎨∂∂∂∂⎪⎪∂∂∂∂==+++⎪∂∂∂∂⎩()u a u u t ∂=+⨯∇∂0utu t⎧∂≠⎪⎪∂⎨∂⎪=⎪∂⎩非恒定流: 恒定流: ()()u u u u ⎧⨯∇≠⎪⎨⨯∇=⎪⎩非均匀流: 均匀流: 流线微分方程:xyzdx dy dz u u u ==迹线微分方程:xyzdx dy dz dt u u u ===流体微团运动分解:1.亥姆霍兹(Helmhotz )速度分解定理 2.微团运动分解 (1)平移运动(2)线变形运动 线变形速度:x xy y z z u xu y u z θθθ∂⎧=⎪∂⎪∂⎪=⎨∂⎪⎪∂=⎪∂⎩(3)角变形运动 角变形速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=+⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=+⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=+⎪∂∂⎪⎝⎭⎩ (4)旋转运动 旋转角速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=-⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=-⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=-⎪∂∂⎪⎝⎭⎩3.有旋运动与无旋运动定义涡量:2xyzij k u xy z u u u ω∂∂∂Ω==∇⨯=∂∂∂有旋流:0Ω≠ 无旋流:0Ω= 即y z x z y xu u y z u u z x u u xy ∂⎧∂=⎪∂∂⎪⎪∂∂=⎨∂∂⎪∂⎪∂=⎪∂∂⎩ 或 000x y z ωωω⎧=⎪=⎨⎪=⎩平面无旋运动:1.速度势函数(简称势函数)(),,x y z ϕ (1)存在条件:不可压缩无旋流。
闻建龙主编的《工程流体力学》习题参考答案第一章绪论1-1 物质是按什么原则分为固体和液体两大类的?解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。
如空气、水等。
而在同等条件下,固体则产生有限的变形。
因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。
与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。
1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么?解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。
流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。
在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm )内的流动。
1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体分别为C 020的水和C 020时密度为3856m kg的原油时,移动平板所需的力各为多大?题1-3图解:20℃ 水:s Pa ⋅⨯=-3101μ20℃,3/856m kg =ρ, 原油:s Pa ⋅⨯='-3102.7μ水: 233/410416101m N u =⨯⨯=⋅=--δμτ 油: 233/8.2810416102.7m N u =⨯⨯=⋅'=--δμτ 1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ⋅=7.0μ液体(图1-4),液体中有一边长为mm a 60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律是直线。
第一章流体物性与黏性1、流体质点是体积无穷小的流体微团,指相对于流场无穷小2、连续性假设是将流体认为是连续分布的流体质点所组成3、流体力学中物理量的基本量纲是L、M、T、Θ4、静止流体具有粘性5、理想流体没有黏性6、牛顿流体层与层之间的黏性切应力与速度梯度成正比7、液体的粘度随着温度的升高而降低8、黏性使紧贴固体表面的薄层流体随固体一起运动9、由于流体的黏性,可使流体在流动时出现速度梯度,同时使流体之间存在黏性切应力10、流体的可压缩性是指流体密度或体积在压力变化时而有变化的属性11、流体的热膨胀性是指流体密度或体积在温度变化时而有变化的属性12、马赫数小于0.3为低速空气空气动力学,可忽略其中流体密度的变化第二章流体静力学1、重力场中,单位质量的质量力是已知的2、流体静止是指流体相邻流体质点间没有相对运动3、静止流体的表面力具有沿作用面内法线方向的特性4、锅炉内静止水中的压强计算选择p0+γh计算式5、静压力的通用计算式p=p0+γh在绝对静止流体、重力场中、不可压缩流体、连通的同种流体情况下使用6、在绝对静止流体、重力场中、不可压缩流体、连通的同种流体条件下,等高面就是等压面7、在重力作用下静止液体中,等压面是水平面的条件是相互连通8、静止流体中,任一点处流体的压强增加不一定等值传递9、静止不可压缩液体中,任一点处压强的增加可在液体中等值地传递到其他点10、液体受到表面压强p作用后,它将毫不改变地传递到液体内部任何一点11、真空度是低于当地大气压的那部分压强12、一般情况下,平板静压力合力的压力中在面积形心之下13、计算静压合力的竖直分力时,压力体的体积一般在受力壁面的上方14、平壁面静水压力的合力作用点在压力中心15、压力中心的位置在受压面的形心以下或受压面的形心处16、任意形状平壁上所受静水压力等于该平壁的形心处静水压强与该受压面的面积的乘积17、静止流体中,任一点处流体的压强来自各个方向,并相等18、对于高于当地大气压的那部分压强用表压力计量19、一般情况下,自由液面肯定是等压面20、计算静压合力的竖直分力时,压力体内不一定有流体21、流体中某点的相对压强/记示压强是指该点的绝对压强与当地大气压的差值22、静止流体中存在压应力23、平衡液体中的等压面必为与质量力相正交的面,等压面与质量力正交24、欧拉平衡微分方程理想流体和实际流体均适用25、相对压强必为正值×26、作用于两种不同液体接触面上的压力是质量力×27、静压强变化仅是由质量力引起的√28、静压强的大小与受压面的方位无关√29、静水总压力的方向垂直指向受压面30、用图解法计算静水总压力适用于受压平面是矩形31、二维曲面上的静水总压力的作用点就是静水总压力的水平分力与铅直分力的交点×32、物体在水中受到的浮力等于作用于物体表面的静水总压力√33、水深相同的静止水面一定是等压面×34、单位质量力是指作用在单位质量流体上的质量力35、粘性流体在宏观尺度上其在固体物面上的速度等于当地物面的速度36、静止流体受到的切应力为037、静止液体中任意一点的静水压强与自由面上压强的一次方成正比38、仅在重力作用下,静止液体中任意一点对同一基准面的单位势能为常数39、容器内盛有静止液体,则容器底部承受的合压力与自由面上的压强无关1、图示的容器a中盛有密度为r1的液体,容器b中盛有密度为r1和r2的两种液体,则两个容器中曲面AB上压力体相同,但压力不相等。