流体动力学理论基础流体运动学
- 格式:ppt
- 大小:1.67 MB
- 文档页数:30
流体的运动学基础流体的运动学是研究流体在没有外力作用下的运动规律和特性的学科。
它广泛应用于物理学、力学、航空航天工程、水利工程等领域。
本文将介绍流体运动学的基本概念和我们对流体运动的理解。
一、流体的运动学基本概念流体是一种特殊物质形态,它具有没有固定形状和可变容积的特点。
流体的运动学主要研究宏观量,比如流体的速度、加速度、流速等。
下面我们将介绍一些流体运动学的基本概念。
1. 流动性流动性是流体运动学的基本特性之一。
流体分为液体和气体两种,液体的分子间作用力较大,分子难以突破内聚力,因此具有较小的可压缩性;而气体的分子间距离较大,分子间作用力相对较小,因此具有较大的可压缩性。
流动性使得流体能够运动和在容器或管道中传输。
2. 流速与流量流速是指单位时间内通过某一截面的流体的体积。
在流动过程中,流体的流速可能是不均匀的,因此为了描述整个流体的流动情况,我们引入了流量的概念。
流量是指单位时间内通过某一截面的流体的质量或体积。
在实际应用中,我们通常更关注流量而不是流速。
3. 流线与流管流线是指在不同时刻,流体质点所通过的路径连成的曲线。
流线能够直观地表达出流体运动的路径和轨迹。
当流体运动具有稳定性和不可压缩性时,流线也是连续的。
流管是由流线围成的管道,它能够将流体流动的区域划分出来。
二、流体的运动学方程流体的运动学方程是描述流体在运动过程中物理量变化规律的方程。
常见的流体的运动学方程包括欧拉方程和纳维-斯托克斯方程。
1. 欧拉方程欧拉方程描述的是连续介质中的流体运动,它是基于质点的视角建立的。
欧拉方程可表达为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的流速,∇是偏微分运算符。
2. 纳维-斯托克斯方程纳维-斯托克斯方程描述的是流体在宏观尺度上的运动规律,它是基于控制体的视角建立的。
纳维-斯托克斯方程可表达为:∂v/∂t + v·∇v = -∇p/ρ + ν∇^2v + f其中,∂v/∂t是流体的加速度,v是流体的流速,p是压强,ρ是密度,ν是运动黏度,f是外力项。
3 流体运动学基础流体运动学主要讨论流体的运动参数(例如速度和加速度)和运动描述等问题。
运动是物体的存在形式,是物体的本质特征。
流体的运动无时不在,百川归海、风起云涌是自然界流体运动的壮丽景色。
而在工程实际中,很多领域都需要对流体运动规律进行分析和研究。
因此,相对于流体静力学,流体运动学的研究具有更加深刻和广泛的意义。
3.1 描述流体运动的二种方法为研究流体运动,首先需要建立描述流体运动的方法。
从理论上说,有二种可行的方法:拉格朗日(Lagrange)方法和欧拉(Euler)方法。
流体运动的各物理量如位移、速度、加速度等等称为流体的流动参数。
对流体运动的描述就是要建立流动参数的数学模型,这个数学模型能反映流动参数随时间和空间的变化情况。
拉格朗日方法是一种“质点跟踪”方法,即通过描述各质点的流动参数来描述整个流体的流动情况。
欧拉方法则是一种“观察点”方法,通过分布于各处的观察点,记录流体质点通过这些观察点时的流动参数,同样可以描述整个流体的流动情况。
下面分别介绍这二种方法。
3.1.1拉格朗日(Lagrange)方法这是一种基于流体质点的描述方法。
通过描述各质点的流动参数变化规律,来确定整个流体的变化规律。
无数的质点运动组成流体运动,那么如何区分每个质点呢?区分各质点方法是根据它们的初始位置来判别。
这是因为在初始时刻(t =t 0),每个质点所占的初始位置(a,b,c )各不相同,所以可以据此区别。
这就像长跑运动员一样,在比赛前给他们编上号码,在任何时刻就不至于混淆身份了。
当经过△t 时间后,t = t 0+△t ,初始位置为a,b,c )的某质点到达了新的位置(x ,y ,z ),因此,拉格朗日方法需要跟踪质点的运动,以确定该质点的流动参数。
拉格朗日方法在直角坐标系中位移的数学描述是:⎪⎭⎪⎬⎫===),,,(),,,(),,,(t c b a z z t c b a y y t c b a x x (3-1)式中,初始坐标(a,b,c )与时间变量t 无关,(a,b,c,t )称为拉格朗日变数。
简述流体动力学和流体运动学的区别摘要:一、引言二、流体动力学与流体运动学的概念及定义三、流体动力学的主要研究内容四、流体运动学的主要研究内容五、两者之间的区别与联系六、实例说明七、结论正文:一、引言在物理学领域,流体动力学和流体运动学是两个密切相关但又有所区别的学科。
了解这两者的区别,有助于我们更好地把握它们在实际应用中的作用。
二、流体动力学与流体运动学的概念及定义1.流体动力学:研究流体在受到外部力作用下产生加速度、压力变化等现象的学科,主要关注流体内部的力学性质和流体与固体之间的相互作用。
2.流体运动学:研究流体在空间中的运动状态和速度分布等现象,不考虑流体内部的力学性质和流体与固体之间的相互作用。
三、流体动力学的主要研究内容1.流体受力分析:包括质量守恒定律、动量守恒定律、能量守恒定律等。
2.流体运动方程:描述流体运动的基本方程,如Navier-Stokes方程。
3.流体与固体的相互作用:如边界层、湍流、旋涡等。
4.流体内部的力学性质:如粘性、热传导等。
四、流体运动学的主要研究内容1.流体运动状态的描述:如速度、加速度、压力分布等。
2.流体速度场的分析:包括速度矢量、流线、涡度等。
3.流体运动的稳定性:如层流稳定性、湍流稳定性等。
4.流体运动的数学模型:如边界层模型、湍流模型等。
五、两者之间的区别与联系1.区别:流体动力学关注流体内部的力学性质和流体与固体之间的相互作用,而流体运动学主要关注流体在空间中的运动状态和速度分布。
2.联系:流体动力学和流体运动学互相补充,流体动力学为流体运动学提供了理论基础,流体运动学则为流体动力学提供了实际应用场景。
六、实例说明1.在船舶设计中,流体动力学主要用于分析船体与水之间的相互作用,如阻力、推进性能等;而流体运动学则用于研究船体周围的水流状态,如速度分布、压力分布等。
2.在航空航天领域,流体动力学用于分析飞行器与大气之间的相互作用,如升力、阻力、气动热等;流体运动学则用于研究飞行器周围的流场,如速度场、压力场等。
第一章 流体的基本概念质量力:f X i Yj Z k =++表面力:0lim =limA A P T p AAτ∆→∆→∆∆=∆∆/w w g s γργγρρ== =/体积压缩系数:111dV d V dpdp Kρβρ=-==温度膨胀系数: 11dV d V dTdTραρ==-pRT ρ= =du du T Adydyμμτμνρ= =第二章 流体静力学欧拉平衡微分方程:()dp Xdx Ydy Zdz ρ=++0p p h γ=+ vv a v p p p p p h γ'=-=-=12sin A p l Kl A γα⎛⎫=+= ⎪⎝⎭匀加速水平直线运动中液体的平衡:0arctan s a a ap p x z ax gz C z x g g g γα⎛⎫⎛⎫=+--+==- ⎪ ⎪⎝⎭⎝⎭=匀角速度旋转运动容器中液体的平衡:2222220222s r r rp p z z C z g g g ωωωγ⎛⎫=+--== ⎪⎝⎭静止液体作用于平面壁上的总压力:1.解析法:C c c D C C J P h A p A y y y Aγ===+2.图解法:静水总压力大小等于压强分布图的体积,其作用线通过压强分布图的形心,该作用线与受压面的交点即是压力中心D 。
第三章 流体运动学基础欧拉法:速度为()()(),,,,,,,,,x x y y z z u u x y z t u u x y z t u u x y z t ⎧=⎪=⎨⎪=⎩加速度为x x x x x xx y z y y y y y y x y z z z z z zz x y zdu u u u u a u u u dt t x y zdu u u u u a u u u dt t x y z du u u u u a u u u dt t x y z ∂∂∂∂⎧==+++⎪∂∂∂∂⎪∂∂∂∂⎪==+++⎨∂∂∂∂⎪⎪∂∂∂∂==+++⎪∂∂∂∂⎩()u a u u t ∂=+⨯∇∂0utu t⎧∂≠⎪⎪∂⎨∂⎪=⎪∂⎩非恒定流: 恒定流: ()()u u u u ⎧⨯∇≠⎪⎨⨯∇=⎪⎩非均匀流: 均匀流: 流线微分方程:xyzdx dy dz u u u ==迹线微分方程:xyzdx dy dz dt u u u ===流体微团运动分解:1.亥姆霍兹(Helmhotz )速度分解定理 2.微团运动分解 (1)平移运动(2)线变形运动 线变形速度:x xy y z z u xu y u z θθθ∂⎧=⎪∂⎪∂⎪=⎨∂⎪⎪∂=⎪∂⎩(3)角变形运动 角变形速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=+⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=+⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=+⎪∂∂⎪⎝⎭⎩ (4)旋转运动 旋转角速度: 121212yz x x z y y x z u u y z u u z x u u x y εεε⎧∂⎛⎫∂=-⎪⎪∂∂⎝⎭⎪⎪∂∂⎪⎛⎫=-⎨ ⎪∂∂⎝⎭⎪⎪∂⎛⎫∂⎪=-⎪∂∂⎪⎝⎭⎩3.有旋运动与无旋运动定义涡量:2xyzij k u xy z u u u ω∂∂∂Ω==∇⨯=∂∂∂有旋流:0Ω≠ 无旋流:0Ω= 即y z x z y xu u y z u u z x u u xy ∂⎧∂=⎪∂∂⎪⎪∂∂=⎨∂∂⎪∂⎪∂=⎪∂∂⎩ 或 000x y z ωωω⎧=⎪=⎨⎪=⎩平面无旋运动:1.速度势函数(简称势函数)(),,x y z ϕ (1)存在条件:不可压缩无旋流。
第三章流体运动学与动力学基础主要内容z基本概念z欧拉运动微分方程z连续性方程——质量守恒*z伯努利方程——能量守恒** 重点z动量方程——动量守恒** 难点z方程的应用第一节研究流体运动的两种方法z流体质点:物理点。
是构成连续介质的流体的基本单位,宏观上无穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许多流体分子的统计学特性)。
z空间点:几何点,表示空间位置。
流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。
拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。
一、拉格朗日法(跟踪法、质点法)Lagrangian method1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。
2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。
3、方程:设任意时刻t,质点坐标为(x,y,z) ,则:x = x(a,b,c,t)y = y(a,b,c,t)z = z(a,b,c,t)4、适用情况:流体的振动和波动问题。
5、优点:可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。
缺点:不便于研究整个流场的特性。
二、欧拉法(站岗法、流场法)Eulerian method1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。
2、欧拉变数:空间坐标(x ,y ,z )称为欧拉变数。
3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。
位置: x = x(x,y,z,t) y = y(x,y,z,t) z = z(x,y,z,t) 速度: u x =u x (x,y,z,t ) u y =u y (x,y,z,t ) u z =u z (x,y,z,t )同理: p =p (x,y,z,t ) ,ρ=ρ(x,y,z,t) 说明: x 、y 、z 也是时间t 的函数。