《工程流体力学》第3章 流体动力学理论基础
- 格式:ppt
- 大小:2.57 MB
- 文档页数:64
流体动力学基础第3章流体动力学基础一、单项选择题1、当液体为恒定流时,必有()等于零。
A .当地加速度 B.迁移加速度 C.向心加速度 D.合加速度2、均匀流过流断面上各点的()等于常数。
A.p B.z+g p ρ C. g p ρ+g u 22 D. z+g p ρ+gu 223、过流断面是指与()的横断面。
A .迹线正交 B.流线正交 C.流线斜交 D.迹线斜交4、已知不可压缩流体的流速场为Ux=f(y,z),Uy=f(x),Uz=0,则该流动为()。
A.一元流B.二元流C.三元流D.均匀流5、用欧拉法研究流体运动时,流体质点的加速度a=( ). A. 22dtr d B.t u ?? C.(u ·▽)u D. t u ??+(u ·▽)u 6、在恒定流中,流线与迹线在几何上()。
A.相交B.正交C.平行D.重合7、控制体是指相对于某个坐标系来说,( ).A .由确定的流体质点所组成的流体团B.有流体流过的固定不变的任何体积 C.其形状,位置随时间变化的任何体积 D.其形状不变而位置随时间变化的任何体积.8、渐变流过流断面近似为( ).A.抛物面B.双曲面C.对数曲面D.平面9、在图3.1所示的等径长直管流中,M-M 为过流断面,N-N 为水平面,则有( ).A.p1=p2B.p3=p4C.z1+g p ρ1 =z2+g p ρ2D.z3+g p ρ3 =z4+gp ρ4 10、已知突然扩大管道突扩前后管段的管径之比21d d =0.5, 则突扩前后断面平均流速之比v1:v2=( ).A. 4B.2C.1D.0.511、根据图3.2 所示的三通管流,可得()。
A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 12、根据图3.3 所示的三通管流,可得()。
A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 13、测压管水头坡度Jp=()。
第一章 绪论1-1.20℃的水2。
5m3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1—2.当空气温度从0℃增加至20℃时,运动粘度增加15%,重度减少10%,问此时动力粘度增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度增加了3.5%1—3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中、分别为水的密度和动力粘度,为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当=0.5m,y=0时)05.0(807.91000002.0-⨯⨯=τPa 807.9=1—4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm ,斜坡角22。
620(见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1—5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
已知导线直径0。
第三章流体动力学基础本章是流体动力学的基础。
主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。
此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。
第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。
图3-1为流线谱中显示的流线形状。
(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。
流线是欧拉法分析流动的重要概念。
图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。
图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。
b.流线不能是折线,而是一条光滑的曲线。
因为流体是连续介质,各运动要素是空间的连续函数。
c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。
因为对不可压缩流体,元流的流速与其过水断面面积成反比。
(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。
所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。
图3-5中烟火的轨迹为迹线。
(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。