第六章 多自由度体系的微振动
- 格式:ppt
- 大小:524.50 KB
- 文档页数:25
第六章 多自由度系统固有频率和主振型的两种近似解法从多自由度问题的精确解的求解过程可知,求振系的固有频率及主振型是一项必不可少的过程,当自由度较少时,可直接求固有频率及主振型,但当自由度较多时,关于固有频率的求解就很复杂,如一个16自由度的振动问题,仅为展开频率方程的行列式,就需要进行720次计算,当然这些计算可借助计算机解决,但关于固有频率的近似计算及其计算思想,在实际应用及理论研究中仍具有一定的意义。
本章主要介绍求固有频率的两种方法:矩阵迭代法及传递矩阵法。
6-1矩阵迭代法矩阵迭代法适合于自由度较多的复杂系统,该法可以同时计算出系统的固有频率和相应的主振型,当自由度很多,但只要计算出低阶的几个频率时,矩阵迭代法很为适用,其大量的计算可由计算机完成。
在第五章已经介绍过,多自由度无阻尼系统的振动微分方程有两种形式,一种是用刚度矩阵建立的,其固有频率和主振型可由下式求,[]{}[]{}{}02=-A M p A K或写成[]{}[]{}A M p A K 2= (6-1)另一种是用柔度矩阵建立的,其固有频率和主振型可由下式求出{}[][]{}{}012=-A M R A p 或写成{}[][]{}A M R A p=21(6-2) 用[]1-M 前乘(6-1)式,得[]1-M []{}{}A p A K 2= (6-3)方程(6-2)(6-3)可写成如下统一的形式[]{}{}A A D λ= (6-4)(6-4)式称为特征值问题的标准形式,即矩阵迭代法的基本迭代公式。
式中[]D 称为动力矩阵,λ则是矩阵[]D 的特征值,当[]D 是按刚度矩阵形成时,即[][][]K M D 1-=,则λ表示固有频率的平方,λ=p 2,而当[]D 是按柔度矩阵形成时,即[][][]K R D =,则λ表示固有频率的平方的倒数,λ=1/p 2。
显然,任一阶固有频率和主振型都是(6-4)式的精确解。
下面介绍从(6-4)式出发进行迭代的基本过程:1) 某个经过基准化了的初始迭代向量{}1A (所谓基准化就是选取迭代向量的某个分量为基准值1),现选取{}1A ,使其第一个元素A 1,1为基准值1,并作[]{}1AD =运算,运算得到一个新的列阵{}1B ,再将{}1B 基准化,即将新的列阵{}1B 中的各元素均除以B 1,1,可得[]{}{}{}21,111A B B A D ==2) 与{}2A ,如果{}1A ≠{}2A ,则重复上述步骤,以[]D 乘{}2A ,得[]{}{}{}32,122A B B A D ==3) 比{}2A 与{}3A ,如果{}3A ≠{}2A ,则继续重复上述步骤,以[]D 乘{}3A ,…,直到第k 次迭代[]{}{}{}1,1+==k k k k A B B A D ,当式中{}k A ={}1+k A 时停止,这时,特征值1λ=B 1,k ,而相应的特征向量就等于{}k A 。
第六章多自由体系的微振动一.多自由度体系线性自由振动的一般处理方法二.简正坐标三.寻找简正坐标的一般方法代入拉格朗日方程:特解为:代回微分方程:12;A A 有不为零的解:上述四个根,则有:代入拉格朗日方程:引入新坐标:;,削去了动能中的交叉项,应用拉格朗日方程,可以表示成两个独立广义坐标的二阶微分方程:应用()12;q q 比()12;x x 方便!()12;q q 称为简正坐标。
简正坐标的物理意义:(1) 如果体系的振动过程中只以一个频率振动,其余频率的振动没有激发,则反映这种振动模式的坐标称为简正坐标。
相应的振动模式称为简正振动,(2) 体系的任意一种状态都是各种不同简正振动的线性叠加。
2.寻找简正坐标的方法:通过坐标变化,使得:设:通过变换使得:;同时变为:;我们寻找C!先考虑势能:(用矩阵表示)例:(1)将势能写成矩阵形式:(2)求本征值方程:解得:对应于对角化变换矩阵为:则:用矩阵表示:其中:转换矩阵:代回到方程中:其中:我们的目的是使势能变成:这就要求D 是对角矩阵:其中:12,,n λλλ 称为矩阵B 的本征值,本征值方程为:矩阵 C 由 矩阵 B 的本征矢量 11,,n K K K组成:其中:通过上述变换,使得势能变成了平方和的形式,保持势能的平方和形式不变,再做一次变换使得动能也变成平方和形式:变换:取:动能和势能的系数矩阵:取:例:变换坐标:势能项已经是平方和形式了,取:代回到:则有:归一化解:由:得到:则:作业:1.P186 对于3个广义坐标的情况,求简正坐标。
2.阅读并理解P187 的6.5 节。