第五章(第6,7,8节)多自由度系统的振动
- 格式:ppt
- 大小:1.02 MB
- 文档页数:35
多自由度系统的振动模态分析振动是物体在受到外界作用力或受到初始扰动后产生的周期性运动。
在工程领域中,多自由度系统的振动模态分析是一项重要的研究内容。
本文将介绍多自由度系统的振动模态分析的基本原理和方法。
一、多自由度系统的定义多自由度系统是指由多个相互连接的质点组成的系统。
每个质点都可以在三个坐标方向上自由运动,因此系统的自由度就是质点的个数乘以每个质点的自由度。
多自由度系统的振动模态分析可以帮助我们了解系统的固有振动特性,为工程设计和结构优化提供依据。
二、振动模态的概念振动模态是指多自由度系统在固有频率下的振动形态。
每个固有频率对应一个振动模态,振动模态的数量等于系统的自由度。
振动模态分析可以帮助我们确定系统在不同频率下的振动特性,从而预测系统的响应和寻找可能的共振点。
三、振动模态分析的方法1. 模态分析方法模态分析是一种通过数学方法求解系统的固有频率和振动模态的方法。
常用的模态分析方法包括有限元法、模态超级位置法等。
有限元法是一种基于离散化的方法,将系统分割成有限个小单元,通过求解每个单元的振动特性,最终得到整个系统的振动模态。
模态超级位置法是一种基于物理原理的方法,通过测量系统在不同频率下的振动响应,推导出系统的振动模态。
2. 模态参数的计算模态参数是指描述振动模态特性的参数,包括固有频率、振型、振幅等。
模态参数的计算可以通过实验测量和数值模拟两种方法。
实验测量是通过激励系统,测量系统在不同频率下的振动响应,并通过信号处理和频谱分析等方法计算出模态参数。
数值模拟是通过建立系统的数学模型,利用计算机仿真软件求解系统的振动模态。
四、振动模态分析的应用振动模态分析在工程领域有广泛的应用。
首先,振动模态分析可以帮助工程师了解系统的固有振动特性,从而优化设计和改善结构。
其次,振动模态分析可以用于故障诊断和预测,通过对系统的振动模态进行监测和分析,可以判断系统是否存在异常或潜在故障。
此外,振动模态分析还可以应用于声学工程、航天工程、汽车工程等领域。
多自由度系统振动的研究1.建立系统的数学模型:多自由度系统的数学模型通常可以通过运动微分方程来描述,这些微分方程可以由拉格朗日方程或哈密顿方程获得。
建立系统的数学模型是研究多自由度系统的第一步,它能够定量描述系统的振动特性。
2.振动模态分析:振动模态是指各种独立振动模式对应的特征值及特征向量。
在多自由度系统中,有多个振动模态,每个振动模态都有对应的特征值和特征向量,它们描述了系统在不同振动模态下的振动特性。
振动模态分析可以帮助我们理解系统的振动特性、模式和共振现象,并为系统的设计和优化提供依据。
3.模态叠加方法:模态叠加方法是一种常用的分析多自由度系统振动响应的方法。
该方法将系统的初始条件和外力激励在模态基下展开,通过将各模态响应相加,得到系统的总体振动响应。
模态叠加方法可以简化计算,使得问题的求解更加方便,应用广泛。
4.模态分析与结构动力学:多自由度系统的模态分析与结构动力学密切相关。
结构动力学是研究结构体受外力激励下的振动响应的学科,它通常涉及到多自由度系统的模态分析、频率响应和时域分析等。
模态分析为结构动力学提供了基础,通过分析结构的振动模态,可以预测结构在不同激励下的振动响应。
5.数值模拟与实验验证:在研究多自由度系统的振动过程中,可以借助于数值模拟和实验验证相结合的方法。
数值模拟可以通过有限元、边界元或半经验法等方法,对系统的振动响应进行计算和预测。
实验验证可以通过振动台试验或实验模态分析等方式,对系统的振动特性进行实测,从而验证数值模拟的准确性。
总之,研究多自由度系统振动是一个复杂而又重要的课题。
通过建立数学模型、进行振动模态分析、应用模态叠加方法以及进行数值模拟和实验验证等手段,可以更深入地了解多自由度系统的振动特性,为实际工程问题的求解和优化提供科学依据。
第五章两自由度系统振动§5-1 概述单自由度系统的振动理论是振动理论的基础。
在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。
两自由度系统是最简单的多自由度系统。
从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。
研究两自由度系统是分析和掌握多自由度系统振动特性的基础。
所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。
很多生产实际中的问题都可以简化为两自由度的振动系统。
①汽车动力学模型:图3.1两自由度汽车动力学模型§5-2 两自由度系统的自由振动一、系统的运动微分方程②以图3.2的双弹簧质量系统为例。
设弹簧的刚度分别为k 1和k 2,质量为m 1、m 2。
质量的位移分别用x 1和x 2来表示,并以静平衡位置为坐标原点,以向下为正方向。
(分析)在振动过程中的任一瞬间t ,m 1和m 2的位移分别为x 1及x 2。
此时,在质量m 1上作用有弹性恢复力()12211x x k x k -及,在质量m 2上作用有弹性恢复力()122x x k -。
这些力的作用方向如图所示。
应用牛顿运动定律,可建立该系统的振动微分方程式:()()⎭⎬⎫=-+=--+00122221221111x x k x m x x k x k xm (3.1)令2212121,,m k c m k b m k k a ==+=则(3.1)式可改写成如下形式:()()⎭⎬⎫=-+=--+00122221221111x x k x m x x k x k xm⎭⎬⎫=+-=-+00212211cx cx xbx ax x(3.2) 这是一个二阶常系数线性齐次联立微分方程组。
(分析)在第一个方程中包含2bx -项,第二个方程中则包含1cx -项,称为“耦合项”(coupling term )。
这表明,质量m 1除受到弹簧k 1的恢复力的作用外,还受到弹簧 k 2的恢复力的作用。