机械振动多自由度系统的自由振动
- 格式:ppt
- 大小:2.04 MB
- 文档页数:29
《机械振动学》教学大纲一、一、课程性质和目标机械振动学是机械设计、制造及自动化专业的一门专业选修课,总学时32,学分3.2。
随着机器生产率的不断提高,导致了载荷的速度和加速度的增加,这就使得机械动力学的问题变得日益突出起来,机械动力学的一个重要组成部分机械振动同样也不会例外。
本课程就是为了适应生产实际的需要,为大学本科高年级学生开设的一门技术基础课。
本课程着重从工程实际的角度对机械振动的有关理论进行讨论,使学生在掌握基本理论的基础上,能够把工程中的实际机械抽象为力学模型,然后在正确的力学模型基础上运用已有的知识进行正确的力学分析,解决一些工程实际的问题,达到学与用的统一。
二、二、先选课程或知识理论力学、材料力学、高等数学、线性代数和相关的专业知识等。
三、三、教学内容基本要求绪论(1学时)第一章第一章单自由度系统的振动(10学时)振动系统的力学模型及自由度的概念;弹性元件的形式和刚度;振动微分方程的推导;无阻尼自由振动;固有频率的计算;粘性阻尼对自由振动的影响;无阻尼受迫振动;具有粘性阻尼的受迫振动;等效粘性阻尼的概念;单自由度系统振动的利用及振动分析;单自由度系统的减动;机械结构的动应力和动刚度的概念。
第二章第二章二自由度系统的振动(8学时)应用动静法建立方程式;应用拉格朗日方程建立方程式;振动方程的一般形式及其矩阵表示法;无阻尼二自由度系统的自由振动;无阻尼二自由度系统的受迫振动;具有粘性阻尼的二自由度系统的自由振动;具有粘性阻尼的二自由度系统的受迫振动;二自由度振动系统的利用及振动机械的振动分析;振动机械及测试机器的二次隔振;动力减振原理与动力减振器。
第三章第三章多自由度系统的自由振动(6学时)多自由度系统举例;刚度矩阵与刚度影响系数;柔度矩阵与柔度影响系数;惯性藕联和弹性藕联;固有频率与振型矩阵。
第四章第四章多自由度系统的受迫振动(3学时)无阻尼系统受迫振动的响应;多自由度系统的阻尼。
四、实践性环节基本要求25个自由度系统的计算机辅助振动分析4学时五、课程考核要求由主讲教师自定考核。
什么是自由振动、受迫振动
自由振动和受迫振动是描述振动系统行为的两种基本类型。
1. 自由振动(Free Vibration):
•定义:自由振动是指振动系统在没有外部干扰或驱动力的情况下自发进行的振动。
一旦振动系统受到初位置或初速度的扰动,它将以自身的固有频率振荡。
•特点:
•自由振动的特征频率由系统的固有属性(如质量、弹性系数)决定。
•在自由振动中,系统的能量在势能和动能之间交换,且振幅随时间逐渐衰减,这种衰减被称为阻尼。
2. 受迫振动(Forced Vibration):
•定义:受迫振动是指振动系统受到外部驱动力的作用,系统在外力的作用下进行振动。
外部驱动力通常有一个固定的频率,可以与系统的固有频率相同或不同。
•特点:
•外部驱动力引起了系统的振动,并且系统的振幅和相位角可能受到外力的影响。
•当外力的频率与系统的固有频率相匹配时,共振现象可能发生,振幅会急剧增大。
总体而言,自由振动和受迫振动是描述振动系统行为的两种基本情况,它们在实际应用中都具有重要的意义。
自由振动常见于没有外
部扰动的自然振动系统,而受迫振动则常见于系统受到外力驱动或激励的情况,如机械振动、电路振动等。
多自由度振动系统的动力学模型构建引言:多自由度振动系统是指由多个自由度的质点组成的系统,在这样的系统中,每个自由度都可以独立地进行运动。
动力学模型的构建是研究和理解振动系统行为的基础。
本文将介绍多自由度振动系统动力学模型的构建方法及应用。
一、质点模型多自由度振动系统的最基本组成单位是质点。
质点的运动可以用坐标形式以及质点的质量、刚性等参数来描述。
对于一个有n个自由度的振动系统,可以通过将每个自由度的质点模型相连接构成整个系统。
二、约束关系与广义坐标在多自由度振动系统中,质点之间相互约束,其运动不再是自由的,而是受到约束的影响。
为了描述约束关系,引入广义坐标来表示系统各个自由度的相对运动。
广义坐标是将实际坐标通过约束条件变换得到的坐标表示。
三、拉格朗日方程与振动方程拉格朗日方程是多自由度振动系统的基本动力学方程。
通过对系统的动能和势能进行推导和求导,可以得到描述系统运动的拉格朗日方程。
对于振动系统而言,通过求解拉格朗日方程,可以得到系统的振动方程,进一步描述系统的运动行为。
四、模态分析与特征频率模态分析是研究振动系统固有特性的方法。
对于多自由度振动系统,可以通过模态分析得到系统的固有模态和特征频率。
固有模态是指系统在自由振动时,各个自由度的振动模式。
特征频率是指系统在不同固有模态下的振动频率。
五、系统的耦合与动态响应多自由度振动系统中的各个质点之间存在耦合关系,一个自由度的振动会对其他自由度的振动产生影响。
通过研究系统的耦合关系,可以得到系统的动态响应。
动态响应是指系统对外界激励的响应行为,可以通过求解振动方程得到。
六、应用案例:建筑结构振动多自由度振动系统的应用广泛,尤其在建筑结构的振动研究中起到了重要作用。
通过对建筑结构的多自由度振动系统进行建模和分析,可以评估结构的稳定性、抗震性能等。
振动模型的构建和分析可以提供设计和改进建筑结构的依据。
结论:多自由度振动系统的动力学模型构建是研究振动系统行为的关键步骤。
《机械振动》课程教学大纲(60)《机械振动》课程教学大纲课程名称:机械振动课程编号:s031007课程学时:60课程学分:3适用于专业:工程力学,石油天然气机械工程,油气钻井工程,化工过程机械课程性质:学位课先修课程:理论力学,材料力学,线性代数执笔人:毛东风撰写时间:2002年6月28日一、课程的目的和要求振动理论就是为工程技术人员恰当展开产品和结构的动力特性设计而上开的一门基础知识课程,就是石油机械等有关学科硕士生的一门学位课程。
本课程着重介绍机械系统的线性振动理沦,包括单自由度,两自由度,多自由度和弹性体振动的基本理论及其在工程实际中的应用。
它就是学生在本科初步自学了单自由度系统振动和分析力学的基础上展开的。
它建议学生创建振动的一系列基本概念,掌控振动的关键特性,能运用所学的力学原理和数学知识建立相应的数学方程从而将振动问题归咎于数学问题的典型力学方法;并为运用非常有限单元法电子计算机算法,处置机械产品和工程结构的振动问题打下基础。
二、教学内容及学时安排第一章第一章绪论课程的内容和任务,振动的分类,力学模型第二章第二章单自由度系统的民主自由振动(4学时)第一节第一节单自由度系统的自由振动。
振动微分方程。
初始响应。
第二节第二节系统固有频率(圆频率)第三节第三节等效质量与等效刚度第四节第四节存有阻尼民主自由振动微分方程及其特性第三章单自由度系统的胁迫振动(学时)第一节第一节简谐激振力作用下的强迫振动。
旋转矢量法,稳态强迫振动的特性,起始阶段的振动(瞬态),拍摄的概念。
第二节第二节偏心质量引起的强迫振动。
幅频,相频特性。
第三节第三节车轴并作简谐运动引发的受迫振动。
幅频,相频特性。
第四节第四节惯性式测振仪原理,加速度计,快速仪。
第五节第五节隔振原理。
隔振系数。
第六节第六节周期激振的积极响应。
第四章任一激振的积极响应。
杜哈美分数。
第五章两自由度系统的振动(10-12学时)第一节第一节开场白两自由度系统振动的共同特性,研究方法,主座标(正则坐标)。
第^一章机械振动振动是指物体或系统在其平衡位置附近的往复运动。
(例子:物体位置、电流强度、电压、电场强度、磁场强度等 )。
物体或系统质点数是无穷的,自由度数也是无穷的, 因此存在空间分布和时间分布,需要用偏微分方程描述 (如果一个微分方程中出现多元函数的偏导数, 或未知函数与几个变量有关,而且未知函数对应几个变量的导数,那么这种微分方程就是偏微分方程。
例如弦包含很多的质点,不能用质点力学的定律研究, 但是可以将其细分成若干个极小的小段, 每小段可以抽象成一个质点, 用微分的方法研究质点的位移, 其是这点所在的位置和时间变量的函数,根据张力,就可以建立起弦振动的偏微分方程)。
一、简谐振动(单自由度体系无阻尼自由小振动)虽然多质点的振动要用偏微分方程描述,但是我们可以简化或只考虑细分成的每一小 段,那么就成为单质点单自由度 (只需一个坐标变量)的振动。
F k 人k F = -kx,ax,令mm m 2 22 d x d x 2 a x, a 2 2x=0 dt 2 dt 2x= Acos@t + = Ae%嚅 特征方程:・2…‘2 =0 特征根=i在微分方程中所出现的未知函数的导数的最高阶数称为这个方程的 阶。
dx形如-P ⑴x=Q (x )的方程为线性方程,其特点是它关于未知函数dx一次的。
若Q (x )。
则-P(t )-0称为齐次的线性方程。
二阶常系数齐次线性微分方程的解法:二 ‘2為2 = a ± i 卩由 x=Acos(,t:)= v-- Asi n(JAcos 他t +3) = Acos 盟(t +T按周期定义,-,同时满足以上两方程的 T 的-«Asin (co t 十®) =Asin ® (t +T]最小值应为2p ,所以T = 2p ,于是n二丄,w= 2pn ,w 称为圆频率或角频率。
不像A 、 w w T;:,由初始条件决定, w 由固有参量k 和m 决定,与初始条件无关,故称为振子的固有频率。
汽车多自由度振动系统动力学分析1 题目说明图1所示为包含动力总成和乘员座椅的7自由度汽车整车振动动力学模型。
模型参数如表1所示。
图1 汽车7自由度振动模型表1 振动模型参数列表项目参数说明车身参数符号物理意义数值单位bm车身质量3193 kg bI车身绕惯性轴的转动惯量7000*^2kg m悬架参数fk前悬架刚度96600/N m fc前悬架阻尼45200/Ns m fl前悬架到质心的距离 1.792m rk后悬架刚度150000/N m rc后悬架阻尼45200/Ns m rl后悬架到质心的距离 1.19m轮胎参数tfm前轮胎质量60kg tfk前轮胎刚度520000/N m trm后轮胎质量60kg根据上述模型说明及参数定义,进行以下规定内容的建模、计算与分析工作,撰写计算分析报告并进行分组汇报。
具体要求如下:(1)建模、计算与分析内容要求●采用适当的方法建立图1汽车多自由度振动系统的振动微分方程,并整理为矩阵表达方式。
●利用计算机仿真计算的方法求出系统的固有频率和模态振型(需要提供动画显示效果);●建立从前轮路面不平度位移输入到座椅振动加速度间,及后轮路面不平度位移输入到动力总成俯仰角振动位移间的频率响应函数计算工时,以绘图方式进行显示,同时分析其特征。
●假设车辆通过图示的路面不平凸块,在车速为10m/s时,计算座椅的垂向加速度响应、车身质心位置的垂向加速度和俯仰角位移响应、动力总成质心的垂向加速度和俯仰角响应(时域),绘图病予以分析;●分析不同车速下(0-30m/s)对车辆通过所规定凸块的振动响应的影响机制。
●在此基础上,探讨动力总成悬置系同的固有特性与整车悬架系统固有振动特性之间的配置对振动响应的影响。
提示:(2)提交物及要求每个小组由组长负责提交并组织实施以下内容:●计算分析报告电子版本和打印版本各1份,格式规范,内容完整,须包括内容概要、数学建模、计算机仿真、结果分析、参考文献等基本内容,同时须将计算源程序以附录形式作为整个报告的一部分。
习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
一、考试知识点
第一章
1、单自由度系统振动方程。
2、无阻尼单自由度系统的自由振动。
3、等效单自由度系统。
4、有阻尼单自由度系统的自由振动。
5、简谐力激励下的受迫振动。
6、基础简谐激励下的受迫振动。
第二章
1、多自由度系统的振动方程。
2、建立系统微分方程的方法。
3、无阻尼系统的自由振动。
4、无阻尼系统的受迫振动。
二、考题分布情况
1、主要围绕作业题、课堂练习题、经典例题题型展开。
2、复习时把握每章知识要点,理解基础题型解题方法。
3、考卷共6道大题。
习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
m
222(2)m l θ= ⎧⎨⎩211
(2)m l θ= 212(22)2k l l l θθ−⋅−⋅⋅11k l l θ−⋅221(22)2k l l l
θθ−⋅−⋅⋅
习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
m
m
m
m
m
m
习题课及考前复习(24题)
一、考试知识点
二、考题分布情况
三、作业题
四、课堂练习题
五、经典例题
m。