轴向拉压杆的强度计算
- 格式:ppt
- 大小:3.47 MB
- 文档页数:22
第三章 拉压杆的强度计算及静不定问题本章重点内容及对学生的要求:(1)杆件承受拉压时的强度条件以及许用应力的确定;(2)能熟练应用杆件承受拉压时的强度条件去完成强度校核、截面设计、确定最大许可载荷等与其强度相关的计算。
第一节 承受拉压杆件的强度计算1、强度条件和许用应力的确定(1)工作应力AN=σ,前面讨论杆件轴向拉压时截面的应力是构件的实际应力——工作应力。
工作应力仅取决于外力和构件的几何尺寸。
只要外力和构件几何尺寸相同,不同材料做成的构件的工作应力是相同的。
随着N 的增加,杆件的应力也相应增加,为保证杆的安全工作,杆的工作应力应该规定一个最高的允许值。
这个允许值是建立在材料力学性能的基础上的,称作材料的许用应力。
(2)许用应力[]σ的确定◆材料的极限应力材料的极限应力是指保证正常工作条件下,该材料所能承受的最大应力值。
对于塑性材料,当应力达到屈服极限时,整个杆件都会发生比较大的变形且不能恢复,因此构件材料的极限应力为屈服极限。
脆性材料时,当应力达到强度极限时发生断裂,故对脆性材料以b σ作为极限应力。
⎪⎩⎪⎨⎧=脆性材料为强度极限塑性材料为屈服极限 )(2.00b s t t σσσσ◆安全系数和许用应力的确定 工程实际中是否允许⎩⎨⎧==bs σσσσ0 不允许!对于同样的工作应力,为什么有的构件破坏、有的不破坏?显然这与材料的性质有关。
原因为:# 实际与理想不相符生产过程、工艺不可能完全符合要求; 对外部条件估计不足; 数学模型经过简化;某些不可预测的因素;# 构件必须适应工作条件的变化,要有强度储备。
(例如南方与北方的温差问题) # 考虑安全因素综上所述得出许用应力[]nσσ=[][]⎪⎪⎩⎪⎪⎨⎧==b bs s n n σσσσ脆性材料:塑性材料: 一般来讲,s b n n 〉,因为断裂破坏比屈服破坏更危险。
安全系数的选取还要考虑对安全要求的高低和经济等因素的影响。
(3)强度条件以上为受拉压杆件的强度条件。
《机械基础》说课稿课题:轴向拉伸与压缩时杆件的强度计算一、简析教材(一)说教材本节内容选自栾学刚等主编的,由高等教育出版社出版的《机械基础》教材,本教材是中等职业教育课程改革国家规划新教材,经中等职业教育教材审定委员会审定通过的。
《机械基础》是一门综合性的技术基础课,其内容包括:《机械零件的精度》、《杆件的静力分析》、《直杆的基本变形》、《工程材料》、《连接》、《常用机构》、《机械传动》、《支承零部件》、《机械节能环保与安全防护》、《气液压传动》等十章内容。
研究的重点是机构和零件。
但各种机构和零件,如何决定其尺寸的大小,究竟采用什么材料来制造,又可采取何种办法来改善材料的性能,以满足生产的需要等问题,就需用力学知识和材料热处理知识来解决。
而材料力学研究是关键,其研究对象主要是等截面的直杆。
(二)简述本课内容本次课内容为《机械基础》第三章杆件的基本变形第三节内容。
杆件在外力作用下可能发生各种各样的变形,但归纳起来,有以下四种基本变形,即拉伸或压缩、剪切、扭转和弯曲。
今天所讲的《直杆轴向拉伸与压缩时的强度计算》内容,是对杆件静力学分析的巩固,并且是后续课程内容的基础,因此本节知识将起到承上启下的作用,只有正确而灵活的运用这些知识,才能设计出体积小、重量轻、使用方便、灵活且可靠的机械结构来。
(三)教学内容的处理本次课是《机械基础》教材的第三章(直杆的基本变形)第三节内容,继前一章静力学之后,为材料热处理知识打基础。
材料基本变形这一章主要研究四种基本变形,而本次课要讲的轴向拉伸或压缩变形是最主要的变形。
结合教材和学生所具备的知识点与理解能力,决定把本章节内容按变形方式的不同分别讲解。
为了便于学生的理解和掌握。
本次课主要讲清轴向拉伸与压缩的强度计算为以后讲解其余三种变形和材料力学性能打好基础。
二、教学目标【知识目标】:(1)了解什么是材料的许用应力以及塑性材料和脆性材料许用应力的确定。
(2)通过本节课的学习使学生了解轴向拉伸与压缩变形时的强度计算公式。
轴向拉、压杆的强度计算教学设计基于中职、中专类学生的特点,我选用的是高教出版社《土木工程力学基础》,该书在内容上对原有的冗杂部分进行了删减,在满足教学需要的同时,符合中专生以就业为导向的培养思想。
力学课是一门技术基础课,本课的学习主要是为学生学习专业课做铺垫的,所以十分重要。
所以结合教学大纲的要求及学生层次特点,本课的教学重难点为:【教学重难点】教学重点:理解正应力拉压干强度公式含义教学难点:利用拉压杆强度条件公式解决强度效和、截面设计等工程实际问题。
【教学目标】1. 技能目标:使学生能够应用正应力强度条件公式完成轴向拉压构件强度校核、截面设计和确定许用荷载方面的实际任务。
2.能力目标:加强学生解决问题的能力。
3.情感目标:在探究学习中增强学生的自信。
这样多元化的教学目标,把关键的能力培养蕴含于知识技能的学习中专,并培养他们自信的心理态度。
【教学过程】科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。
因为我们所面对的学生的学习基础薄弱,学习方法单一,习惯于被动接受,而非主动思考,而本节课又是理论性极强的一节课,所以我采用的教法是以任务驱动法为主线贯穿整堂课,各部分穿插讲授法、演示教学法、启发教学法。
而学法上,我贯彻的指导思想是以提高和发展学生的能力为本,启发引导学生积极思考探究问题,发现规律,看到本质,纳未知为已知;倡导“自主、合作、探究”的学习方式,具体的学法是自主学习、探究学习、小组合作完成任务法和分组讨论法。
我的教学过程的开展以任务驱动的形式为主要的教学方法贯穿于课程始终。
在完成任务课题探讨阶段分别使用了范例式教学法和启发式教学法,使学生通过自主学习、探究学习、合作学习的学习方式理解新课知识点。
整个过程强调提高和发展学生的能力为本,其中贯穿了引导、启发的思想,充分发挥教师主导的同时,体现学生主体的教学理念,下面我对具体的教学过程进行做一下阐释。
为了完成教学目标,解决教学重点突破教学难点,课堂教学我按四个大模块、七个教学环节展开来完成教学过程。
第六节 杆件的强度计算由内力图可直观地判断出等直杆内力最大值所发生的截面,称为危险截面,危险截面上应力值最大的点称为危险点。
为了保证构件有足够的强度,其危险点的有关应力需满足对应的强度条件。
一、正应力与切应力强度条件轴向拉(压)杆中的任一点均处于单向应力状态。
塑性及脆性材料的极限应力u σ分别为屈服极限s σ(或2.0σ)和强度极限b σ,则材料在单向应力状态下的破坏条件为u σσ= 材料的许用拉(压)应力[]nuσσ=,则单向应力状态下的正应力强度条件为[]σσ≤ (6-24)同理可得,材料在纯剪切应力状态下的切应力强度条件[]ττ≤ (6-25)二、正应力强度计算由式(6-1)和(6-25)得,拉(压)杆的正应力强度条件为[]σσ≤=AN maxmax (6-26) 由式(6-1)和(6-25)得,梁弯曲的正应力强度条件为[]σσ≤=zW M maxmax (6-27) 应用强度条件可进行强度校核、设计截面、确定许可载荷等三方面的强度计算。
例6-7 如图6-29(a)所示托架,AB 为圆钢杆2.3=d cm ,BC 为正方形木杆a=14cm 。
杆端均用铰链连接。
在结点B 作用一载荷P=60kN 。
已知钢的许用应力[]σ=140MPa 。
木材的许用拉、压应力分别为[]t σ=8MPa ,[]5.3=c σMpa ,试求:(1)校核托架能否正常工作。
(2)为保证托架安全工作,最大许可载荷为多大;(3)如果要求载荷P=60kN 不变,应如何修改钢杆和木杆的截面尺寸。
解 (1)校核托架强度 如图6-29(b)。
图6-29由 0=∑Y ,0sin 1=-P P α解得 100c s c 1==αP P kN 由 0=∑X ,0cos 21=+-P P α 解得 80cos 12==αP P kN杆AB 、BC 的轴力分别为10011==P N kN, 8022-=-=P N kN ,即杆BC 受压、轴力负号不参与运算。
材料力学的基本计算公式外力偶矩计算公式(P功率,n转速)1.弯矩、剪力和荷载集度之间的关系式2.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)5.纵向线应变和横向线应变6.泊松比7.胡克定律8.受多个力作用的杆件纵向变形计算公式?9.承受轴向分布力或变截面的杆件,纵向变形计算公式10.轴向拉压杆的强度计算公式11.许用应力,脆性材料,塑性材料12.延伸率13.截面收缩率14.剪切胡克定律(切变模量G,切应变g )15.拉压弹性模量E、泊松比和切变模量G之间关系式16.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆17.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)18.圆截面周边各点处最大切应力计算公式19.扭转截面系数,(a)实心圆(b)空心圆20.薄壁圆管(壁厚δ≤ R0/10 ,R0为圆管的平均半径)扭转切应力计算公式21.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式22.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或23.等直圆轴强度条件24.塑性材料;脆性材料25.扭转圆轴的刚度条件? 或26.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,27.平面应力状态下斜截面应力的一般公式,28.平面应力状态的三个主应力, ,29.主平面方位的计算公式30.面内最大切应力31.受扭圆轴表面某点的三个主应力,,32.三向应力状态最大与最小正应力 ,33.三向应力状态最大切应力34.广义胡克定律35.四种强度理论的相当应力36.一种常见的应力状态的强度条件,37.组合图形的形心坐标计算公式,38.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式39.截面图形对轴z和轴y的惯性半径? ,40.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)41.纯弯曲梁的正应力计算公式42.横力弯曲最大正应力计算公式43.矩形、圆形、空心圆形的弯曲截面系数?,,44.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)45.矩形截面梁最大弯曲切应力发生在中性轴处46.工字形截面梁腹板上的弯曲切应力近似公式47.轧制工字钢梁最大弯曲切应力计算公式48.圆形截面梁最大弯曲切应力发生在中性轴处49.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处50.弯曲正应力强度条件51.几种常见截面梁的弯曲切应力强度条件52.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,53.梁的挠曲线近似微分方程54.梁的转角方程55.梁的挠曲线方程?56.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式57.偏心拉伸(压缩)58.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,59.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为60.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式61.62.弯拉扭或弯压扭组合作用时强度计算公式63.剪切实用计算的强度条件64.挤压实用计算的强度条件65.等截面细长压杆在四种杆端约束情况下的临界力计算公式66.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.567.压杆的长细比或柔度计算公式,68.细长压杆临界应力的欧拉公式69.欧拉公式的适用范围70.压杆稳定性计算的安全系数法71.压杆稳定性计算的折减系数法72.关系需查表求得。
资料力学的基本计算公式外力偶矩计算公式(P功率,n转速)1.弯矩、剪力和荷载集度之间的关系式2.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力FN,横截面面积A,拉应力为正)3.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)4.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)5.纵向线应变和横向线应变6.泊松比7.胡克定律8.受多个力作用的杆件纵向变形计算公式?9.承受轴向分布力或变截面的杆件,纵向变形计算公式10.轴向拉压杆的强度计算公式11.许用应力,脆性资料,塑性资料12.延伸率13.截面收缩率14.剪切胡克定律(切变模量G,切应变g )15.拉压弹性模量E、泊松比和切变模量G之间关系式16.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆17.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r )18.圆截面周边各点处最大切应力计算公式19.扭转截面系数,(a)实心圆(b)空心圆20.薄壁圆管(壁厚δ≤ R0 /10 ,R0 为圆管的平均半径)扭转切应力计算公式21.圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式22.同一资料制成的圆轴各段内的扭矩分歧或各段的直径分歧(如阶梯轴)时或23.等直圆轴强度条件24.塑性资料;脆性资料25.扭转圆轴的刚度条件? 或26.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,27.平面应力状态下斜截面应力的一般公式,28.平面应力状态的三个主应力,,29.主平面方位的计算公式30.面内最大切应力31.受扭圆轴概况某点的三个主应力,,32.三向应力状态最大与最小正应力,33.三向应力状态最大切应力34.广义胡克定律35.四种强度理论的相当应力36.一种罕见的应力状态的强度条件,37.组合图形的形心坐标计算公式,38.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式39.截面图形对轴z和轴y的惯性半径? ,40.平行移轴公式(形心轴zc与平行轴z1的距离为a,图形面积为A)41.纯弯曲梁的正应力计算公式42.横力弯曲最大正应力计算公式43.矩形、圆形、空心圆形的弯曲截面系数? ,,44.几种罕见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)45.矩形截面梁最大弯曲切应力发生在中性轴处46.工字形截面梁腹板上的弯曲切应力近似公式47.轧制工字钢梁最大弯曲切应力计算公式48.圆形截面梁最大弯曲切应力发生在中性轴处49.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处50.弯曲正应力强度条件51.几种罕见截面梁的弯曲切应力强度条件52.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,53.梁的挠曲线近似微分方程54.梁的转角方程55.梁的挠曲线方程?56.轴向荷载与横向均布荷载联合作用时杆件截面底部边沿和顶部边沿处的正应力计算公式57.偏心拉伸(压缩)58.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,59.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为60.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式61.62.弯拉扭或弯压扭组合作用时强度计算公式63.剪切实用计算的强度条件64.挤压实用计算的强度条件65.等截面细长压杆在四种杆端约束情况下的临界力计算公式66.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.567.压杆的长细比或柔度计算公式,68.细长压杆临界应力的欧拉公式69.欧拉公式的适用范围70.压杆稳定性计算的平安系数法71.压杆稳定性计算的折减系数法72.关系需查表求得。