x
x1 1
节点
x3 1
3 2
k m
x2 1
理解固有振型
理解固有振型
理解固有振型
返回
固有振型的正交性
1.固有振型的归一化
2 r 1 3 2 r 1 3
都是固有振型向量 ① 按某一自由度的幅值归一化
( K 2 M ) 0
1 1 1 2 1 1
有非零
det( K 2 M ) 0
1
k (1 2 )k , 2 m m
多自由度系统的固有振动
u1 k1 m1 k2 m2 u2 k3
固有振动:
k (1 2 ) k 1 1 u1 (t ) sin t 2 m t 1 , u2 (t ) 1 sin m 1
固有振型的正交性
加权正交性的简洁表示
T r M s 0, r s
M s M r , r s
T r
rT M s M r rs
rs
def
1, r s 0, r s
rT K s 0, r s
rT K s K r , r s
【问题】在已知固有频率求固有振型时,所得到的N个线性方程中有几个是独
立的?
( K r2 M ) r 0
结论: 当 r 不是特征方程的重根时,上述方程只有N-1个方程是独立的(见 <<振动力学>>刘延柱第74页).
多自由度系统的固有振动
【例】设图中二自由度系统的物理参为 m1 m2 m, k 1 k 3 k , k 2 k , 0 1 ,确定系统的固有振动.