当前位置:文档之家› 单球面折射成像公式及其应用_张家乐

单球面折射成像公式及其应用_张家乐

单球面折射成像公式及其应用_张家乐
单球面折射成像公式及其应用_张家乐

3-4__球面折射成像

§3-4 球面折射成像 两种媒质的分界面是球面的折射。 一、理想成像的物像公式 1、成像光路图 P
球面
P.1
P.2
A
P
O
P’ C
O
P’ C
光束关于主轴对称,所以只需讨论过主轴的平 面内的成像特性。 考察由光源P发出的两条光线: (1) 沿主轴方向不发生偏折的光线POP’; (2) 入射到球面上A点,折射后交光轴于P’点的光线 PAP’。
next next
O为球面的中心,也称为球面的顶点, C为球面的球心,也称为球面的曲率中心, 过O点和C点的线称为主轴(或光轴)。 物点P发出的光束经球面折射后会聚于像点P’ 。
2、符号法则 (1) 轴上点
P O C P’
P.3
(2)垂轴线段 垂轴线段的高度也用代数量表示。 轴上为正,轴下为负。 正
P
P.4
建立坐标系,用代数量描述轴上点的位置。 坐标轴:方向沿光轴,正向与入射光线方向一致, 原点为球面顶点O。 物点:坐标用s 表示,称为物距。 一般情况下,实物s为负,虚物s为正。 像点:坐标用s'表示,称为像距。 一般情况下,实像s'为正,虚像s'为负。 球心:坐标用r表示,称为球面半径。
next
负 ?
O C
正 ?
P’
负 (3)光线与光轴的夹角: 光线与光轴的夹角仍用代数量描述。 从光轴开始转向角的另一边,顺时针为正,逆 时针为负。
next
P.5 在光路图中,通常标出的都是几何量(正值)。 如图:物距为负值,标为 –s; 像距为正,标为s'; 球面半径为正,标为r; PA与光轴的夹角为负,标为-u; P’A与光轴的夹角为正,标为u'。 过A点的球面法线是CA,入射角为-i,折射角为-i' 。
3、物象关系的推导 目的:找到s'与s, r, n, n'的关系。 方法:在A点处用折射定律 : n sin(-i)=n'sin(-i'), 从几何上找到 sin(-i)、sin(-i') 与 s, r, s' 的关系,得物 像关系式。 -i
A
P.6
-i P -u
A
-i' u' O C -s r s'
next
-i' u' O C P’
P’
P
-u
-s
r s'
next
1

光在球面上反射与折射

§1.4、光在球面上的反射与折射 1.4.1、球面镜成像 (1)球面镜的焦距球面镜的反射仍遵从反射定律,法线是球面的半径。一束近主轴的平行光线,经凹镜反射后将会聚于主轴上一点F (图1-4-1),这F 点称为凹镜的焦点。一束近主轴的平行光线经凸面镜反射后将发散,反向延长可会聚于主轴上一点F (图1-4-2),这F 点称为凸镜的虚焦点。焦点F 到镜面顶点O 之间的距离叫做球面镜的焦距f 。可以证明,球面镜焦距f 等于球面半径R 的一半,即 2R f = (2)球面镜成像公式 根据反射定律可以推导出球面镜的成像公式。下面以凹镜为例来推导:(如图1-4-3所示)设在凹镜的主轴上有一个物体S ,由S 发出的射向凹镜的光线镜面A 点反射后与主轴交于S '点,半径CA 为反射的法线, S '即S 的像。根据反射定律,AC S SAC '∠=∠,则CA 为S SA '角A 的平分线, 根据角平分线的性质有 S C CS S A AS '= ' ① 由为SA 为近轴光线,所以O S S A '=',SO AS =,①式可改写为 S C CS S O OS '=' ② ②式中OS 叫物距u ,S O '叫像距v ,设凹镜焦距为f ,则 图1-4-1 图 1-4-2

f u OC OS CS 2-=-= υ-='-='f S O OC S C 2 代入①式 υ υ --= f f u u 22 化简 f u 111=+υ 这个公式同样适用于凸镜。使用球面镜的成像公式时要注意:凹镜焦距f 取正,凸镜焦距f 取负;实物u 取正,虚物u 取负;实像v 为正,虚像v 为负。 f u 111=+υ 上式是球面镜成像公式。它适用于凹面镜成像和凸面镜成像,各量符号遵循“实取正,虚取负”的原则。凸面镜的焦点是虚的,因此焦距为负值。在成像中,像长 和物长h 之比为成像放大率,用m 表示, u h h m υ='= 由成像公式和放大率关系式可以讨论球面镜成像情况,对于凹镜,如表Ⅰ所列;对于凸镜,如表Ⅱ所列。 表Ⅰ 凹镜成像情况

光在球面上地反射与折射球面镜成像球面镜地焦距

文档 §1.4、光在球面上的反射与折射 1.4.1、球面镜成像 (1)球面镜的焦距球面镜的反射仍遵从反射定律,法线是球面的半径。一束近主轴的平行光线,经凹镜反射后将会聚于主轴上一点F (图1-4-1),这F 点称为凹镜的焦点。一束近主轴的平行光线经凸面镜反射后将发散,反向延长可会聚于主轴上一点F (图1-4-2),这F 点称为凸镜的虚焦点。焦点F 到镜面顶点O 之间的距离叫做球面镜的焦距f 。可以证明,球面镜焦距f 等于球面半径R 的一半,即 2R f = (2)球面镜成像公式 根据反射定律可以推导出球面镜的成像公式。下面以凹镜为例来推导:(如图1-4-3所示)设在凹镜的主轴上有一个物体S ,由S 发出的射向凹镜的光线镜面A 点反射后与主轴交于S '点,半径CA 为反射的法线,S '即S 的像。根据反射定律, AC S SAC '∠=∠,则CA 为S SA '角A 的平分线,根据角平分线的性质有 O 图1-4-1 图 1-4-2

文档 S C CS S A AS '= ' ① 由为SA 为近轴光线,所以O S S A '=',SO AS =,①式可改写为 S C CS S O OS '= ' ② ②式中OS 叫物距u ,S O '叫像距v ,设凹镜焦距为f ,则 f u OC OS CS 2-=-= υ-='-='f S O OC S C 2 代入①式 υ υ --= f f u u 22 化简 f u 111=+υ 这个公式同样适用于凸镜。使用球面镜的成像公式时要注意:凹镜焦距f 取正,凸镜焦距f 取负;实物u 取正,虚物u 取负;实像v 为正,虚像v 为负。 f u 111=+υ

光在球面上的反射与折射

光在球面上的反射与折射 1.4.1、球面镜成像 (1)球面镜的焦距球面镜的反射仍遵从反射定律,法线是球面的半径。一束近主轴的平行光线,经凹镜反射后将会聚于主轴上一点F (图1-4-1),这F 点称为凹镜的焦点。一束近主轴的平行光线经 凸面镜反射后将发散,反向延长可会聚于主轴上一 点F (图1-4-2),这F 点称为凸镜的虚焦点。焦 点F到镜面顶点O 之间的距离叫做球面镜的焦距f。可以证明,球面镜焦距f等于球面半径R 的一半,即 2R f = (2)球面镜成像公式 f u 111=+υ 上式是球面镜成像公式。它适用于凹面镜成像和凸面镜成像,各量符号遵循“实取正,虚取负”的原则。凸面镜的焦点是虚的,因此焦距为负值。在成像中,像长 和物长h 之比为成像放大率,用m 表示, u h h m υ='= 由成像公式和放大率关系式可以讨论球面镜成像情况,对于凹镜,如表Ⅰ所列;对于凸镜, 如表Ⅱ所列。 1.4.2、球面折射成像 (1)球面折射成像公式 r n n v n u n 1 221-=+ 这是球面折射的成像公式,式中u 、υ的符号同样 遵循“实正虚负”的法则,对于R;则当球心C在出射光的一个侧,(凸面朝向入射光)时为正,当球心C 在入射光的一侧(凹面朝向入射光)时为负。 若引入焦点和焦距概念,则当入射光为平行于主轴的平行光(u=∝)时,出射光(或其反向延长线)的交点即为第二焦点,(也称像方焦点),此时像距即是第二焦 距2f ,有1 22 2n n R n f -=。当出射光为平行光时,入射光(或其延长线)的交点即第一焦点(即物方焦点),这时 物距即为第一焦距1f ,有 121 1n n R n f -=,将1f 、2f 代入成像公式改写成 图1-4-1 图 1-4-2 图1-4-6 A

单球面物象折射公式及其应用

引言(绪论) 光学中以光线概念为基础研究光的传播和成像规律的一个重要分支是几何光学.在几何光学中,折射定律的发现标志着光线传播定律的最终确立,费马原理即是解释、证明和概括光线传播实验定律的途径之一. 本文依据费马原理,推导出了近轴光线条件下的单球面物像折射公式.应用近轴光线条件下的单球面物像折射公式,可以推导出多种情况下的成像公式,为研究复杂的光学系统成像提供了基础性的理论依据,以说明单球面物像折射公式在几何光学中的基础重要性.

1 符号法则 为了研究光线经由球面反射和折射后的光路,必须先说明一些概念以及规定适当的符号法则,以便使所得的结果能普遍适用,方便读者阅读. 图1 主平面内的球面反射 图1中的AOB表示球面的一部分.这部分球面的中心点O称为顶点,球面的球心C 称为曲率中心,球面的半径称为曲率半径,连接顶点和曲率中心的直线CO称为主轴,通过主轴的平面称为主平面.主轴对于所有的主平面具有对称性.因此只需讨论一个主平面内光线的反射情况.图1表示球面的一个主平面. 在计算任一条光线的线段长度和角度时,对符号作如下规定: (1)线段长度都从顶点算起,凡光线和主轴的交点在顶点右方的,线 段长度的数值为正;凡光线和主轴的交点在顶点左方的,线段长度的数值负.物点或像点至主轴的距离,在主轴上方的为正,下方的为负. (2)光线方向的倾斜角度都从主轴(或球面法线)转向有关光线时, 若沿顺时针方向移动,则该角度为正;若沿逆时针方向转动,则该角度为负(再考虑角度的符号时,不必考虑组成该角的线段的符号). (3)在图中出现的长度和角度(几何量)只用正值.例如s表示的某线 来表示该线段的几何长度.下讨论都假定光线自左向右传段的值是负的,则应用s 播. (4)特俗情况下的,文中均在相应位置另有特殊解释说明. 2 单球面物象折射公式的推导 2.1 球面折射的一般分析

单球面物象折射公式及其应用

言(绪论) 光学中以光线概念为基础研究光的传播和成像规律的一个重要分支是几何光学.在几何光学中,折射定律的发现标志着光线传播定律的最终确立,费马原理即是解释、证明和概括光线传播实验定律的途径之一. 本文依据费马原理,推导出了近轴光线条件下的单球面物像折射公式. 应用近轴光线条件下的单球面物像折射公式,可以推导出多种情况下的成像公式,为研究复杂的光学系统成像提供了基础性的理论依据,以说明单球面物像折射公式在几何光学中的基础重要性.

1符号法则 为了研究光线经由球面反射和折射后的光路,必须先说明一些概念以及规定适当的符号法则,以便使所得的结果能普遍适用,方便读者阅读. 图1主平面内的球面反射 图1中的AOB表示球面的一部分.这部分球面的中心点0称为顶点,球面的球心C 称为曲率中心,球面的半径称为曲率半径,连接顶点和曲率中心的直线CO称为主轴,通过主轴的平面称为主平面.主轴对于所有的主平面具有对称性.因此只需讨论一个主平面内光线的反射情况.图1表示球面的一个主平面. 在计算任一条光线的线段长度和角度时,对符号作如下规定: (1)线段长度都从顶点算起,凡光线和主轴的交点在顶点右方的,线 段长度的数值为正;凡光线和主轴的交点在顶点左方的,线段长度的数值负.物点或像点至主轴的距离,在主轴上方的为正,下方的为负. (2)光线方向的倾斜角度都从主轴(或球面法线)转向有关光线时,若沿顺时针方向移动,贝U该角度为正;若沿逆时针方向转动,贝U该角度为负(再考虑角度的符号时,不必考虑组成该角的线段的符号). (3)在图中出现的长度和角度(几何量)只用正值.例如s表示的某线 段的值是负的,则应用s来表示该线段的几何长度.下讨论都假定光线自左向右传 播. (4)特俗情况下的,文中均在相应位置另有特殊解释说明 2单球面物象折射公式的推导 2.1球面折射的一般分析

相关主题
文本预览
相关文档 最新文档