当前位置:文档之家› 仿真-傅里叶光学

仿真-傅里叶光学

仿真-傅里叶光学
仿真-傅里叶光学

傅里叶光学实验

——材料24 夏伟泽2020201087

一.实验目的

1.学习掌握傅立叶光学变换的原理;

2.加深对傅立叶光学中的一些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。

二.实验原理

平面波Ee(x,y)入射到p平面(透过率为)在p平面后Z=0处的光场分布为:E(x,y)= Ee(x,y)

图1 入射光波被p平面的图形(或孔径)衍射

根据惠更斯原理(Huygens’ Principle),在p平面后任意一个平面p’处光场的分布可看成p平面上每一个点发出的球面波的组合,也就是基尔霍夫衍射积分(Kirchhoff’s diffraction integral)。

(1)

这里:=球面波波长;

n=p平面(x,y)的法线矢量;

K=(波数)

是位相和振幅因子;

cos(n,r)是倾斜因子;

在一般的观察成像系统中,cos(n,r)1。

r=Z+,分母项中r z;(1)式可用菲涅尔衍射积分表示:(菲涅尔近似 Fresnel approximation)

(2)

当z更大时,即z>>时,公式(2)进一步简化为夫琅和费衍射积分:(Fraunhofer Approximation)

(3)

这里:位相弯曲因子。

如果用空间频率做为新的坐标有:

若傅立叶变换为

(4)

(3)式的傅立叶变换表示如下:

E(x’,y’,z)=F[E(x,y)]=c

图2 空间频率和光线衍射角的关系

tg==,tg==

=,=

可见空间频率越高对应的衍射角也越大,当z越大时,衍射频谱也展的越宽;

由于感光片和人眼等都只能记录光的强度(也叫做功率谱),所以位相弯曲因子

(5)

理论上可以证明,如果在焦距为f的汇聚透镜的前焦面上放一振幅透过率为g(x,y)的图象作为物,并用波长为的单色平面波垂直照明图象,则在透镜后焦面上的复

振幅分布就是g(x,y)的傅立叶变换,其中空间频率,与坐标,的

关系为:,。故面称为频谱面(或傅氏面,由此可见,复杂的二维傅立叶变换可以用一透镜来实现,称为光学傅立叶变换,频谱面上的光强分布,也就是物的夫琅禾费衍射图。

三.实验仪器

防震实验台,He-Ne激光器,扩束系统(包括显微物镜,针孔(30μm),水平移动调整器),全反射镜,透镜及架(f=+150mm,f=+100mm),50线/mm光栅滤波器,白屏

防震实验台:

He-Ne激光器:

扩束系统:

在调整旋钮上点击鼠标左、右键,可以调整显微物镜的位置,在小屏幕上可以看到调整结果,光斑边缘最清晰的时候说明调整好了,如下图:

全反射镜:

双击元件可以进行光心的调整,在光具座的底座和旋钮上点击鼠标左、右键,可以调整元件高度和水平位置。

透镜及架:

光心的调整同全反射镜。

光栅滤波器:

光心的调整同全反射镜。

白屏:

光心的调整同全反射镜。

四.实验内容

利用光学元件观察傅立叶光学现象。

光路调整:

(1)激光器的中心高度固定。将元件放好,调整各元件的光心。

(2)调整扩束系统显微物镜的位置使显微物镜的焦点和针孔完全重合(这时散射光斑是非常均匀而且最强并且没有衍射现象)。

实验现象观察

(1)观察圆孔滤波器经傅立叶透镜变换后的频谱(在白屏平面)并与理论计算相比较。(可以移动傅立叶透镜)。

(2)观察方孔滤波器经傅立叶透镜变换后的频谱(同上)。

(3)观察狭缝经傅立叶透镜变换后的频谱(同上)。

(4)观察光栅经傅立叶透镜变换后的频谱(同上)。

实验重点、难点:

1. 掌握傅立叶光学变换的原理,理解傅立叶光学中的一些基本概念和基本理论。

2.傅立叶透镜的位置调节。

五.实验截图

六.实验结论

复杂的二维傅里叶变换可以用一透镜来实现,频谱面上的光强分布,即物的夫琅禾费衍射图。变换前和变换后的现象证明了这一点。

七.思考题

透镜前焦面上是50条/mm的一维光栅,其频谱面上的空间频率各是多少?相邻两衍射点间距离是多少?已知f=5.0cm,l=632.8mm。

答:f(x)=x’/(λ f), f(y)=y’/(λ f)

△x*d=1*λ,故△x=50*632.8*λ

《傅里叶光学》试题B

一、选择题(每题2分,共40分) 1.三角函数可以用来表示光瞳为________________的非相干成像系统的光学 传递函数。 A 、矩形 B 、圆孔 C 、其它形状 2.Sinc 函数常用来描述________________的夫琅和费衍射图样 A 、圆孔 B 、矩形和狭缝 C 、其它形状 3.高斯函数)](exp[22y x +-π常用来描述激光器发出的________________ A 、平行光束 B 、高斯光束 C 、其它光束 4.圆域函数Circ(r)常用来表示________________的透过率 A 、圆孔 B 、矩孔 C 、方孔 5.卷积运算是描述线性空间不变系统________________的基本运算 A 、输出-输入关系 B 、输入-输出关系 C 、其它关系 6.相关(包括自相关和互相关)常用来比较两个物理信号的________________ A 、相似程度 B 、不同程度 C 、其它关系 7.卷积运算有两种效应,一种是展宽,还有一种就是被卷函数经过卷积运算,其细微结构在一定程度上被消除,函数本身的起伏振荡变得平缓圆滑,这种效应是________________ A 、锐化 B 、平滑化 C 、其它 8互相关是两个信号之间存在多少相似性的量度。两个完全不同的,毫无关系 的信号,对所有位置,它们互相关的结果应该为________________ A 、0 B 、无穷大 C 、其它 9.周期函数随着其周期逐渐增大,频率(即谱线间隔)________________。 当函数周期变为无穷大,实质上变为非周期函数,基频趋于零 A .愈来愈小 B 、愈来愈大 C 、不变 10.圆对称函数的傅立叶变换式本身也是圆对称的,它可通过一维计算求出, 我们称这种变换的特殊形式为________________。这种变换只不过是二维傅立叶变换用于圆对称函数的一个特殊情况

傅里叶级数通俗解析

傅里叶级数通俗解析-CAL-FENGHAI.-(YICAI)-Company One1

傅里叶级数 本文意在阐述傅里叶级数是什么,如何通过数学推导得出,以及傅里叶级数代表的物理含义。 1.完备正交函数集 要讨论傅里叶级数首先得讨论正交函数集。如果n个函数 ,…构成一个函数集,若这些函数在区间上满足 如果是复数集,那么正交条件是 为函数的共轭复函数。 有这个定义,我们可以证明出一些函数集是完备正交函数集。比如三角函数集和复指数函数集在一个周期内是完备正交函数集。 先证明三角函数集: 设,,把代入(1)得 当n时 = = =0 (n,m=1,2,3,…,n) 当n=m时 = = 再证两个都是正弦的情况 设,,把代入(1)得

当n时 = = =0 (n,m=1,2,3,…,n) 当n=m时 = = 最后证明两个是不同名的三角函数的情况 设,,把代入(1)得 = = =0 (n,m为任意整数) 因为两个三角函数相乘只有以上三种情况:两个皆为余弦函数相乘;两个皆为正弦函数相乘;一个为正弦函数,另一个为余弦函数相乘;三种情况皆满足正交函数集的定义,所以三角函数集为正交函数集。至于三角函数集的完备性可以从n,m的取值为任意整数可以得出,三角函数集是完备正交函数集。证毕。 由于三角函数集是完备正交函数集,而根据欧拉公式,我们容易联想到复指数函数集是否也是完备正交函数集呢。 接着是复指数函数集的证明 设,,则把代入(2)得 当n时,根据欧拉公式

= =0 (n,m=1,2,3,…,n) 当n=m时, =1 (n,m=1,2,3,…,n) 所以,复指数函数集也是正交函数集。因为n,m的取值范围是所有整数,所以复指数函数集是完备的正交函数集。 明明是讨论傅里叶级数,为什么第一部分在阐述完备正交函数集呢。因为,在自然界中,没有规则的信号,比如说找一个正弦信号,是完全不可能找到的。有的是一堆杂乱的信号,无规律的波形。我们要研究它,基本的思想是把它拆分,分解成一个一个有规律的可研究的波形,这些波形能用数学表达式准确表达出来。 把一个复杂的信号分解的过程,可以理解成用已知的可以准确表达的函数表示他,比如一个复杂的信号把它分解,就是 其中,…是我们所熟悉的函数, 比如二次函数,一次函数,三角函数,指数函数等等。我们的任务就是求出所分解出来的函数,以及前方的系数n,然后对其研究。那么怎么求呢。完备正交函数集给了我们提供了一种方法。完备正交函数集就像是空间直角坐标系,集合里面的每一个元素相当于坐标系的一条轴,我们知道空间直角坐标系只有3条轴,3条轴,足够表示空间上所有点的位置,不需要再多一条,但是如果只有两条轴,又不能准确地表达立体空间上所有的点,所以3条就是完备的。对于一个函数集的完备性也可以这么理解,表达任意一个周期信号只需要用不多于函数集里面元素的函数就可以表达清楚。再说其正交性,所谓正交,就是函数集里两个不同函数之乘积的积分为0,正交性可以理解成函数集内任意两函数不相关。 既然三角函数集和复指数函数集是完备的正交函数集,那么用其中的一种函数集都可以表达周期信号。 用复指数函数集来表示一个复杂信号: = 其中,(n=1,2,3,…,n)。 用三角函数集表示一个复杂信号:

傅里叶光学实验

傅里叶光学的空间频谱与空间滤波实验11系09级姓名张世杰日期2011年3月30日学号PB09210044 实验目的: 1.了解傅里叶光学中基本概念,如空间频率,空间频谱,空间滤波和卷积 2.理解透镜成像的物理过程 3.通过阿贝尔成像原理,了解透镜孔径对分辨率的影响 实验原理: 一、基本概念 频谱面:透镜的后焦面 空间函数:实质即光波照明图形时从图形反射或透射出来的光波可用空间两维复变函数 空间频谱:一个复变函数f(x,y)的傅立叶变换为 ??+ ) exp[ , F)] ( ( (π , u ) { , ( )} v =dxdy vy ? = f ux - y x 2i f x y F(u,v)叫作f(x,y)的变换函数或频谱函数 空间滤波:在频谱面上放一些光栅以提取某些频段的物信息的过程 滤波器:频谱面上的光阑 二、阿贝尔成像原理 本质就是经过两次傅里叶变换,先是使单色平行光照在光栅上,经衍射分解成不同方向的很多束平行光,经过透镜分别在后焦面上形成点阵,然后代表不同空间频率的光束又在向面上复合而成像。 需要提及的是,由于透镜的大小有限,总有一部分衍射角度大的高频成分不 能进入到透镜而被丢弃了,因此像平面上总是可能会丢失一些高频的信息,即在 透镜的后焦平面上得到的不是物函数的严格的傅立叶变换(频谱),不过只有一 个位相因子的差别,对于一般情况的滤波处理可以不考虑。这个光路的优点是光 路简单,而且可以得到很大的像以便于观察。

三、空间滤波器 在频谱面上放置特殊的光阑,以滤去特定的光信号(1)单透镜系统 (2)双透镜系统 (3)三透镜系统

四、空间滤波器的种类 a .低通滤波:在频谱面上放如图2.4-3(1)所示的光阑,只允许位于频谱面中心及附近的低频分量通过,可以滤掉高频噪音。 b .高通滤波:在频谱面上放如图2.4-3(2)所示的光阑,它阻挡低频分量而让高频分量通过,可以实现图像的衬度反转或边缘增强。 c . 带通滤波:在频谱面上放如图2.4-3(3)所示的光阑,它只允许特定区域的频谱通过,可以去除随机噪音。 d .方向滤波:在频谱面上放如图2.4-3(4)或(5)所示的光阑,它阻挡或允许特定方向上的频谱分量通过,可以突出图像的方向特征。 以上滤波光阑因透光部分是完全透光,不透光部分是将光全 部挡掉,所以称作“二元振幅滤波器”。还有各种其它形式的滤波器,如:“振幅 滤波器”、“相位滤波器”和“复数滤波器”等。 e .相幅滤波器:是将位相转变为振幅的滤波器,它的重要应用就是把”位相物体”显现出来,所谓位相物体是指那些只有空间的位相结构而透明度却一样的透明物体。如生物切片、油膜、热塑等,它们只改变入射光的位相而不影响其振幅。所以人眼不能直接看到透明体中的位相分布也就是它们的形状和结构,利用相幅转换技术就能使人眼看到透明体的形状和结构,从而扩展了人眼的视觉功能。 图 3 图2.4-3 各种形式的空间滤波器

《傅里叶光学导论》历年考题要点

《傅里叶光学导论》历年考题 2002/2003(开卷) 1.(24分) 一个衍射屏的振幅透射率函数为)()cos 2121()(2l r circ r r t β+=。 (1)这个屏的作用在什么方面像透镜? (2)给出此屏焦距的表达式。 (3)当用波长为m μλ6.0=的单色平面波垂直照明时,若23.0mm =β,mm l 20=,在其中的会聚焦点处的艾里斑半径0r 为多大(略去其他两项光束背景影响)? 2.(20分) 某周期性物体的振幅透过率)()(nd x x t n -∑=∞ -∞=δ,假定用均匀的平面波垂直照明,试证明这个物体是“自成像”的,意即物体后面周期性距离上能成自身的理想像,而不需要透镜。

3.(24分) 一成像系统光瞳函数为)2 /()2/()()(),(l y rect l x rect l y rect l x rect y x P -=,mm l 20=,成像透镜焦距mm f 200'=,物像距mm d d o i 400==,照明波长m μλ5.0=。 (1)用非相干光照明时,求 )2(2000i x d l f f f f λ=≤≤,这一区间的光学传递函数)0,(x f ?,画出截面图(请注明标度尺)。 (2)用非相干光照明强度透射率)2cos 1(21)(02x f m x I π+=的物体,其中mm f 周252=,试求出其像的强度分布。 (3)用相干光照明时,求其频率传递函数)0,(x f H ,画出)0,(x f H 的截面图(请注明横纵坐标的标度尺)。 (4)用相干平面波垂直照明振幅透射率为)2cos 1(21)(01x f m x t π+=的物体,其中mm f 周5.371=,试求出其像的强度分布。 4.(20分) (1)波长m μλ 5.0=的单色平面波。(cm x 1043?=,cm y 1041?=,cm z 102 3?=)。试求光场x 轴和y 轴的空间频率。 (2)已知一个相干成像系统的截止频率cm c f 5000=,像面大小为cm cm 11?,最少可用多少个抽样点取值来表示。

傅里叶级数课程及习题讲解

第15章 傅里叶级数 §15.1 傅里叶级数 一 基本内容 一、傅里叶级数 在幂级数讨论中 1 ()n n n f x a x ∞ ==∑,可视为()f x 经函数系 21, , , , , n x x x 线性表出而得.不妨称 2 {1,,,,,}n x x x 为基,则不同的基就有不同的级数.今用三角函数 系作为基,就得到傅里叶级数. 1 三角函数系 函数列{ }1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx 称为三角函数系.其有下 面两个重要性质. (1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零. 对于一个在[,]ππ-可积的函数系{} () [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积 为 (),()()()d b n m n m a u x u x u x u x x =??, 如果 0 (),() 0 n m l m n u x u x m n ≠=?=? ≠?,则称函数系{} () [, ], 1,2, n u x x a b n ∈=:为正交系. 由于 1, sin 1sin d 1cos d 0 nx nx x nx x ππ π π --=?=?=??; sin , sin sin sin d 0 m n mx nx mx nx x m n π π π-=?=?=?≠?? ; cos , cos cos cos d 0 m n mx nx mx nx x m n π π π-=?=?=?≠?? ; sin , cos sin cos d 0 mx nx mx nx x π π -=?=? ; 2 1, 11d 2x ππ π -==?, 所以三角函数系在[ ] ,ππ-上具有正交性,故称为正交系. 利用三角函数系构成的级数 ()01 cos sin 2n n n a a nx b nx ∞ =++∑ 称为三角级数,其中011,,, ,,,n n a a b a b 为常数 2 以2π为周期的傅里叶级数

【免费下载】傅里叶光学讲义

傅里叶光学实验 傅里叶光学原理的发明最早可以追溯到1893年阿贝(Abbe )为了提高显微镜的分辨本领所做的努力。他提出一种新的相干成象的原理,以波动光学衍射和干涉的原理来解释显微镜的成像的过程,解决了提高成像质量的理论问题。1906年波特(Porter )用实验验证了阿贝的理论。1948年全息术提出,1955年光学传递函数作为像质评价兴起,1960年由于激光器的出现使相干光学的实验得到重新装备,因此从上世纪四十年代起古老的光学进入了“现代光学”的阶段,而现代光学的蓬勃发展阶段是从上世纪六十年代起开始。由于阿贝理论的启发,人们开始考虑到光学成像系统与电子通讯系统都是用来收集、传递或者处理信息的,因此上世纪三十年代后期起电子信息论的结果被大量应用于光学系统分析中。两者一个为时间信号,一个是空间信号,但都具有线性性和不变性,所以数学上都可以用傅立叶变换的方法。将光学衍射现象和傅立叶变换频谱分析对应起来,进而应用于光学成像系统的分析中,不仅是以新的概念来理解熟知的物理光学现象,而且使近代光学技术得到了许多重大的发展,例如泽尼克相衬显微镜,光学匹配滤波器等等,因此形成了现代光学中一门技术性很强的分支学科—傅里叶光学。 实验原理: 我们知道一个复变函数f(x,y)的傅立叶变换为: ( 1 )??+-=?=dxdy vy ux 2i y x f y x f v u F )](exp[),()},({),(πF (u,v)叫作f(x,y)的傅立叶变换函数或频谱函数。它一般也为复变函数,f(x,y)叫做原函数,也可以通过求 F(u,v)逆傅立叶变换得到原函数f(x,y): (2)??+=?=-dudv vy ux 2i v u F v u F y x f 1)](exp[),()},({),(π在光学系统中处理的是平面图形,当光波照明图形时从图形反射或透射出来的光波可用空间两维复变函数(简称空间函数)来表示。在这些情况下一般都可以进行傅里叶变换或广义的傅里叶变换。逆傅里叶变换公式(2)说明一个空间函数f(x,y)可以表示成无穷多个基元函数exp[i 2 (ux +vy )]的线性迭加,是相应于空间频率u ,v 的权重,dudv v u F ),(F (u ,v )称为f (x ,y )的空间频谱。 为了下面的说明更方便,介绍几个常用的非初等函数和它们的性质: (1)矩形函数: (3) 0211{)(r 00≤-=-a x x a x x ect 它以x 0为中心,宽度为a (a >0),高度为1,两维矩形函数可以表示为两个一维矩形函数的乘积:((b y y rect a x x rect 00--

傅里叶级数

傅里叶级数(Fourier Series ) 引言 正弦函数是一种常见而简单的周期函数,例如描述简谐振动的函数 就是一个以ωπ 2为周期的函数。其中y 表示动点的位置,t 表示时间,A 为振幅,ω为 角频率,?为初相。 但在实际问题中,除了正弦函数外,还会遇到非正弦的周期函数,它们反映了较复杂的周期运动,我们也想将这些周期函数展开成由简单的周期函数例如三角函数组成的级数。具体地说,将周期为)2(ωπ =T 的周期函数用一系列以T 为周期的正弦函数 )sin(n n t n A ?ω+组成的级数来表示,记为 其中),3,2,1(,,0 =n A A n n ?都是常数。 将周期函数按上述方式展开,它的物理意义就是把一个比较复杂的周期运动看成是许多不同频率的简谐振动的叠加。在电工学上,这种展开称为谐波分析。其中常数项0A 称为 )(t f 的直流分量;)sin(11?ω+t A 称为一次谐波(又叫做基波) ;而)2sin(22?ω+t A , )3sin(33?ω+t A 依次称为二次谐波,三次谐波,等等。 为了下面讨论方便起见,我们将正弦函数)sin(n n t n A ?ω+按三角公式变形,得 t n A t n A t n A n n n n n n ω?ω??ωsin cos cos sin )sin(+=+, 令x t A b A a A a n n n n n n ====ω??,cos ,sin ,2 00,则上式等号右端的级数就可以改写成 这个式子就称为周期函数的傅里叶级数。 1.函数能展开成傅里叶级数的条件 (1) 函数)(x f 须为周期函数; (2) 在一个周期内连续或只有有限个第一类间断点;(如果0x 是函数)(x f 的间断点,但 左极限)0(0-x f 及右极限)0(0+x f 都存在,那么0x 称为函数)(x f 的第一类间断点) (3) 在一个周期内至多只有有限个极值点。

傅里叶级数

第八节 傅里叶级数 内容分布图示 ★ 引 言 ★ 引 例 ★ 三角函数系的正交性 ★ 傅里叶级数的概念 ★ 狄利克雷收敛定理 ★ 例1 ★ 例2 ★ 例3 ★ 非周期函数的周期延拓 ★ 例4 ★ 利用傅氏展开式求数项级数的和 ★ 正弦级数与余弦级数 ★ 例5 ★ 例6 ★ 函数的奇延拓与偶延拓 ★ 例7 ★ 例8 ★ 内容小结 ★ 课堂练习 ★ 习题11-8 ★ 返回 讲解注意: 一、三角级数 三角函数系的正交性 早在18世纪中叶,丹尼尔. 伯努利在解决弦振动问题时就提出了这样的见解:任何复杂的振动都可以分解成一系列谐振动之和. 这一事实用数学语言来描述即为:在一定的条件下,任何周期为T )/2(ωπ=的函数)(t f ,都可用一系列以T 为周期的正弦函数所组成的级数来表示,即 ∑∞ =++=1 0)sin()(n n n t n A A t f ?ω (8.1) 其中n n A A ?,,0),3,2,1( =n 都是常数. 十九世纪初,法国数学家傅里叶曾大胆地断言:“任意”函数都可以展成三角级数. 虽然他没有给出明确的条件和严格的证明,但是毕竟由此开创了“傅里叶分析”这一重要的数学分支,拓广了传统的函数概念. 傅里叶的工作被认为是十九世纪科学迈出的极为重要的第一个大步,它对数学的发展产生的影响是他本人及同时代的其他人都难以预料的. 而且,这种影响至今还在发展之中. 这里所介绍的知识主要是由傅里叶以及与他同时代的德国数学家狄利克雷等人的研究结果. 二、函数展开成傅里叶级数 傅里叶系数 ?????? ?====??--).,3,2,1(,sin )(1 ),,2,1,0(,cos )(1 n nxdx x f b n nxdx x f a n n ππ ππππ (8.5) 将这些系数代入(8.4)式的右端,所得的三角级数 ∑∞=++1 )sin cos (2n n n nx b nx a a (8.6)

傅里叶级数

第十五章 傅里叶级数 §1 傅里叶级数 教学目标 掌握三角级数和傅里叶级数定义,了解傅里叶级数的收敛定理. 教学要求 (1) 基本要求:掌握三角级数和傅里叶级数定义,了解傅里叶级数的收敛定理;能够展开比较简单的函数的傅里叶级数. (2) 较高要求:有关傅里叶级数的逐项求导和逐项求积的问题,向学生介绍引入傅里叶级数的意义 (包括物理意义和数学意义). 教学建议 (1) 向学生介绍引入傅里叶级数的意义(包括物理意义和数学意义). (2) 三角级数和傅里叶级数的展开计算量较大,可布置适量习题使学生了解展 开的方法与步骤. 教学程序 一、 Fourier 级数的定义 背景: ⑴ 波的分析:频谱分析 . 基频 T 1 ( ωπ2=T ) . 倍频. ⑵ 函数展开条件的减弱 : 积分展开 . ⑶ n R 中用Descartes 坐标系建立坐标表示向量思想的推广: 调和分析简介: 十九世纪八十年代法国工程师Fourier 建立了Fourier 分析理论的基础. (一) 定义 设()f x 是(,)-∞+∞上以2π为周期的函数,且()f x 在[,]ππ-上绝对可积,称形如 01 (cos sin )2n n n a a nx b nx ∞ =++∑ 的函数项级数为()f x 的 Fourier 级数或三角级数(()f x 的 Fourier 展开式),其

中 01 ()a f x dx π π π- = ?,1 ()cos ,1,2,n a f x nxdx n π ππ - ==?L , 1 ()sin ,1,2,n b f x nxdx n πππ - = =?L 称为()f x 的 Fourier 系数,记为0 1 ()~ (cos sin )2n n n a f x a nx b nx ∞=++∑ 定理15.1 若级数∑∞ =++1 0) |||| (2||n n n b a a 收敛 , 则级数 01 (cos sin )2n n n a a nx b nx ∞ =++∑ 在R 内绝对且一致收敛 . 证明: 用M 判别法. (二)说明 1)在未讨论收敛性,证明01 (cos sin )2n n n a a nx b nx ∞ =++∑一致收敛到()f x 之前, 不能将“~”改为“=”;此处“~”也不包含“等价”之意,而仅仅表示 01 (cos sin )2n n n a a nx b nx ∞ =++∑是()f x 的 Fourier 级数,或者说()f x 的 Fourier 级数是01 (cos sin )2n n n a a nx b nx ∞ =++∑. 2) 要求[,]ππ-上()f x 的 Fourier 级数,只 须求出Fourier 系数. 例1 设()f x 是以2π为周期的函数,其在[,]ππ-上可表示为 1,0()0,0x f x x π π≤≤?=? -<

傅里叶光学实验

傅里叶光学的空间频谱与空间滤波实验 11系09级姓名张世杰日期2011年3月30日学号PB09210044 实验目的: 1.了解傅里叶光学中基本概念,如空间频率,空间频谱,空间滤波和卷积 2.理解透镜成像的物理过程 3.通过阿贝尔成像原理,了解透镜孔径对分辨率的影响 实验原理: —、基本概念 频谱面:透镜的后焦面 空间函数:实质即光波照明图形时从图形反射或透射出来的光波可用空间两维复变函数 空间频谱:一个复变函数f(x,y)的傅立叶变换为 F (u,v) =、{ f (x, y)} = f(x,y)exp[-i2二(ux vy)]dxdy F(u,v)叫作f(x,y)的变换函数或频谱函数 空间滤波:在频谱面上放一些光栅以提取某些频段的物信息的过程 滤波器:频谱面上的光阑 二、阿贝尔成像原理 本质就是经过两次傅里叶变换,先是使单色平行光照在光栅上,经衍射分解成不同方向的很多束平行光,经过透镜分别在后焦面上形成点阵,然后代表不同 空间频率的光束又在向面上复合而成像。 需要提及的是,由于透镜的大小有限,总有一部分衍射角度大的高频成分不能进入到透镜而被丢弃了,因此像平面上总是可能会丢失一些高频的信息,即在透镜的后焦平面上得到的不是物函数的严格的傅立叶变换(频谱) ,不过只有一 个位相因子的差别,对于一般情况的滤波处理可以不考虑。这个光路的优点是光路简单,而且可以得到很大的像以便于观察。

像面三、空间滤波器 在频谱面上放置特殊的光阑,以滤去特定的光信号 (1)单透镜系统 (2) (3)三透镜系统

a. 低通滤波:在频谱面上放如图 2.4-3(1)所示的光阑,只允许位于频谱面 中心及附近 的低频分量通过,可以滤掉高频噪音。 b. 高通滤波:在频谱面上放如图243(2)所示的光阑,它阻挡低频分量而让 高频分量通 过,可以实现图像的衬度反转或边缘增强。 c. 带通滤波:在频谱面上放如图 2.4-3 (3)所示的 光阑,它只允许特定区域 的频谱通过,可以去除随机噪音。 d. 方向滤波:在频谱面上放如图 2.4-3(4)或(5) 所示的光阑,它阻挡或允 许特定方向上的频谱分量通过,可以突出图像的方向特征。 以上滤波光阑因透光部分是完 全透光,不透光部分是将光全 I 图 3 部挡掉,所以称作“二元振幅滤波器”。图2.4-3各种形式的空间滤波器 还有各种其它形式的滤波器,女口:“振幅 滤波器”、“相位滤波器”和“复数滤波器”等。 e. 相幅滤波器:是将位相转变为振幅的滤波器,它的重要应用就是把”位相物 体”显 现出来,所谓位相物体是指那些只有空间的位相结构而透明度却一样 的透明物体。如生物切片、油膜、热塑等,它们只改变入射光的位相而不影 响其振幅。所以人眼不能直接看到透明体中的位相分布也就是它们的形状和 结构,利用相幅转换技术就能使人眼看到透明体的形状和结构,从而扩展了 人眼的视觉功能。 五、显现位相的技术 (1) 纹影法

大学物理仿真实验傅里叶光学

大学物理仿真实验 ——傅里叶光学实验 实 验 报 告 姓名: 班级: 学号:

实验名称傅里叶光学实验 一、实验目的 1.学会利用光学元件观察傅立叶光学现象。 2.掌握傅立叶光学变换的原理,加深对傅立叶光学中的一些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。 二、实验所用仪器及使用方法 防震实验台,He-Ne激光器,扩束系统(包括显微物镜,针孔(30μm),水平移动调整器),全反射镜,透镜及架(f=+150mm,f=+100mm),50线/mm光栅滤波器,白屏 三、实验原理 平面波Ee(x,y)入射到p平面(透过率为)在p平面后Z=0处的光场分布为:E(x,y)= Ee(x,y) 图根据惠更斯原理(Huygens’ Principle),在p平面后任意一个平面p’处光场的分布可看成p平面上每一个点发出的球面波的组合,也就是基尔霍夫衍射积分(Kirchhoff’s diffraction integral)。 (1) 这里:=球面波波长; n=p平面(x,y)的法线矢量;

K=(波数) 是位相和振幅因子; cos(n,r)是倾斜因子; 在一般的观察成像系统中,cos(n,r)1。 r=Z+,分母项中r z;(1)式可用菲涅尔衍射积分表示:(菲涅尔近似 Fresnel approximation) (2) 当z更大时,即z>>时,公式(2)进一步简化为夫琅和费衍射积分:(Fraunhofer Approximation) 这里: 位相弯曲因子。 如果用空间频率做为新的坐标有: , 若傅立叶变换为 (4)

(3)式的傅立叶变换表示如下: E(x’,y’,z)=F[E(x,y)]=c 图2 空间频率和光线衍射角的关系 tg==,tg== =,= 可见空间频率越高对应的衍射角也越大,当z越大时,衍射频谱也展的越宽; 由于感光片和人眼等都只能记录光的强度(也叫做功率谱),所以位相弯曲因子 (5) 理论上可以证明,如果在焦距为f的汇聚透镜的前焦面上放一振幅透过率为g(x,y)的图象作为物,并用波长为的单色平面波垂直照明图象,则在透镜后焦面上的复振幅分布就是g(x,y)的傅立叶变换,其中空间频率,与坐标, 的关系为:,。故面称为频谱面(或傅氏面,由此可见,复杂的二维傅立叶变换可以用一透镜来实现,称为光学傅立叶变换,频谱面上的光强分布,也就是物的夫琅禾费衍射图。 四、实验结果

《傅里叶光学》试题A

一、选择题(每题2分) 1、《信息光学》即《付里叶光学》课程采用的主要数学分析手段是________________。 A 、光线的光路计算 B 、光的电磁场理论 C 、空间函数的付里叶变换 2、高斯函数)](exp[22y x +-π的付里叶变换为________________。 A 、1 B 、),(y x f f δ C 、)](exp[22y x f f +-π 3、1的付里叶变换为_________________。 A 、),(y x f f δ B 、)sgn()sgn(y x C 、)()(y x f Comb f Comb 4、余弦函数x f 02cos π的付里叶变换为_________________。 A 、)]()([21 00f f f f x x ++-δδ B 、)sin()sin(y x f f C 、1 5、圆函数Circ(r)的付里叶变换为_________________ A 、ρπρ) 2(1J B 、1 C 、),(y x f f δ 6、在付里叶光学中,通常是以_________________理论为基础去分析各种光学问题的。 A 、非线性系统 B 、线性系统 7、_________________是从空间域内描述相干光学系统传递特性的重要光学参量。 A 、脉冲响应 B 、相干传递函数 8、_________________是从空间频域内描述相干光学系统传递特性的重要光学参量。 A 、脉冲响应 B 、相干传递函数 9、_________________是从空间域内描述非相干光学系统传递特性的重要光学参量。 A 、点扩散函数 B 、非相干传递函数(光学传递函数) 10、_______________是从空间频域内描述非相干光学系统传递特性的重要光学参量。 A 、点扩散函数 B 、非相干传递函数(光学传递函数) 11、某平面波的复振幅分布为)](2exp[),(y f x f i A U y x y x +=π那么其在不同方向的空间频率为_________________,它也是复振幅分布的空间频谱。 A 、λα cos =x f λβc o s =x f B 、αλ cos =x f βλ c o s =y f 12、在衍射现象中,当衍射孔越小,中央亮斑就_________________。 A 、越大 B 、越小 C 、不变 13、物体放在透镜_________________位置上时,透镜的像方焦面上才能得到物体准确的付里叶频谱(付里叶变换)。 A 、之前 B 、之后 C 、透镜前表面 D 、透镜的前焦面

傅里叶光学实验

傅里叶光学的空间频谱与空间滤波实验 11 系09 级姓名张世杰日期2011 年3 月30 日学号PB09210044 实验目的: 1.了解傅里叶光学中基本概念,如空间频率,空间频谱,空间滤波和卷积 2.理解透镜成像的物理过程 3.通过阿贝尔成像原理,了解透镜孔径对分辨率的影响 实验原理: 一、基本概念 频谱面:透镜的后焦面 空间函数:实质即光波照明图形时从图形反射或透射出来的光波可用空间两维复变函数空间频谱:一个复变函数f(x,y)的傅立叶变换为 F(u,v)={f(x,y)}= f (x, y)exp[-i2(ux + vy)]dxdy F(u,v)叫作f(x,y)的变换函数或频谱函数 空间滤波:在频谱面上放一些光栅以提取某些频段的物信息的过程 滤波器:频谱面上的光阑 二、阿贝尔成像原理 本质就是经过两次傅里叶变换,先是使单色平行光照在光栅上,经衍射分解成不同方向的很多束平行光,经过透镜分别在后焦面上形成点阵,然后代表不同空间频率的光束又在向面上复合而成像。 需要提及的是,由于透镜的大小有限,总有一部分衍射角度大的高频成分不能进入到透镜而被丢弃了,因此像平面上总是可能会丢失一些高频的信息,即在透镜的后焦平面上得到的不是物函数的严格的傅立叶变换(频谱),不过只有一个位相因子的差别,对于一般情况的滤波处理可以不考虑。这个光路的优点是光路简单,而且可以得到很大的像以便于观察。

三、空间滤波器 在频谱面上放置特殊的光阑,以滤去特定的光信号 (3)三透镜系统

四、空间滤波器的种类 a.低通滤波:在频谱面上放如图2.4-3(1)所示的光阑,只允许位于频谱面中心及附近的低频分量通过,可以滤掉高频噪音。 b.高通滤波:在频谱面上放如图2.4-3(2)所示的光阑,它阻挡低频分量而让高频分量通过,可以实现图像的衬度反转或边缘增强。 c.带通滤波:在频谱面上放如图2.4-3(3)所示的光阑,它只允许特定区域的频谱通过,可以去除随机噪音。 d.方向滤波:在频谱面上放如图2.4-3(4)或(5)所示的光阑,它阻挡或允 许特定方向上的频谱分量通过,可以突出图像的方向特征。 以上滤波光阑因透光部分是完 全透光,不透光部分是将光全 部挡掉,所以称作“二元振幅 滤波器”。图 2.4-3 各种形式的空间滤波器还有各种其它形式的滤波器,如:“振幅滤波器”、“相位滤波器”和“复数滤波器”等。e.相幅滤波器:是将位相转变为振幅的滤波器,它的重要应用就是把”位相物体”显现出来,所谓位相物体是指那些只有空间的位相结构而透明度却一样的透明物体。如生物切片、油膜、热塑等,它们只改变入射光的位相而不影响其振幅。所以人眼不能直接看到透明体中的位相分布也就是它们的形状和结构,利用相幅转换技术就能使人眼看到透明体的形状和结构,从而扩展了人眼的视觉功能。 五、显现位相的技术

傅里叶级数

9.5 傅里叶级数 9.5.1 三角级数 三角函数系的正交性 在自然界和工程技术中周期现象是经常出现的,如振动、电磁波等,当用函数来描述这些现象时出现的就是周期函数.描述简谐振动的正弦函数)sin(?ω+=t A y 是一种简单而又为人们所熟悉的周期函数,其中y 表示动点的位置,t 表示时间,A 为振幅,ω为角频率,?为初相.周期为 ω π 2.现在类似于将函数展开成幂级数,我们也想将周期函数展开成由简单的三角 函数组成的级数.具体的说,希望将以?? ? ? ?= ωπ2T 的周期函数)(t f 表示为 ∑∞ =++ =1 0),sin()(n n n t n A A t f ?ω (1) 其中),3,2,1(,,0 =n A A n n ?都是常数. 在利用三角恒等式,变形为 ∑∞ =++ =1 0);sin cos cos sin ()(n n n n n t n A t n A A t f ω?ω? 令 x t A b A a A a n n n n n n ====ω??,cos ,sin ,2 00,则得到级数 ∑∞ =++ 1 0).sin cos (2 n n n nx b nx a a (2) 称(2)式的级数为三角级数,其中),3,2,1(,,0 =n b a a n n 都是常数. 称三角函数系 ,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nx nx x x x x (3) 在区间],[ππ-上正交,就是指在三角函数系(3)中任何不同的两个函数的乘积在区间 ],[ππ-上的积分等于零,即 ?- ==π π),3,2,1(0cos n nxdx , ?- ==π π),3,2,1(0 sin n nxdx , ?- ==π π),3,2,1,(0cos sin n k nxdx kx , ?- ≠==π π),,3,2,1,(0 cos cos n k n k nxdx kx ,

傅里叶级数

傅里叶级数 一:指数形式 给定一个周期为T的函数f(t),那么它可以表示为无穷级数: f(t)=∑ k=-∞+∞a k *e ik(2∏/T)t(i为虚数单位)(1) ak=(1/∏)∫ 02∏f(t)*e-ik(2∏/T)t d t 二:正弦形式 1:在物理学中,我们已经知道最简单的波是谐波(正弦波), 它是形如Asin(ωt+Φ) 的波,其中A是振幅, ω是角频率, Φ是初相位.其他的波如矩形波,锯形波等往往都可以用一系列谐波的叠加表示出来.这就是说,设f(t)是一个周期为T 的波,在一定条件下可以把它写成 f(t)=A0+∑n=1+∞A n sin(nωt+Φ) =A0+∑n=1+∞a n cos(nωt)+b n sin(nωt) (根据sin(α+β)=sinαcosβ+cosαsinβ) 其中A n sin(nωt+Φ)=a n cos(nωt)+b n sin(nωt) 是n阶谐波, 我们称上式右端的级数是由f(t) 所确定的傅里叶级数 2:三角函数正交性 设c是任意实数, 是长度为[c,c+2∏] 的区间,由于三角函数是周期为2∏ 的函数,经过简单计算, 有

利用积化和差的三角公式容易证明 还有 我们考察三角函数系 其中每一个函数在长为的区间上定义,其中任何两个不同的函数乘积沿区间上的积分等零,而每个函数自身平方的积分非零。我们称这个函数系在长为的区间上具有正交性。

三:傅里叶级数 设函数f(x)已展开为全区间设的一致收敛的三角级数f(x)=(a0/2)+Σk=1+∞a k cos(kx)+b k sin(kx),现在利用三角函数系数的正交性来研究系数a0,a k,b k (k=1,2....n)与f(x) 的关系。将上述展开式沿区间[-Π,+Π]积分,右边级数可以逐项积分,由(1)得到 又设n是任一正整数,对f(x)的展开式两边乘以cos(nx)沿[-Π,+Π]积分,由假定,右边可以逐项积分,由(1)和(2)(3) ,得到 即: 同样可得:

傅里叶光学金典试题及答案和重要知识点总结

1 / 11 光学信息技术原理与应用 复习资料 一、基本概念: 1. 傅里叶变换,傅里叶逆变换; 正变换 dx πux j x g u G ?∞ ∞ --= ]2[ex p )()( 逆变换 u ux j u x g d ]2exp[)G()(?∞ ∞ -=π μ,ν— 空间频率 G(μ,ν) — 频谱 ,傅里叶谱,角谱 物理意义: 1.一个空间函数 g(x ,y) ,可视为向前传播的一列光波。 2.它可分解为无穷多个传播方向不同的平面波。 3.某一方向传播的平面波可视为一个空间单频信号。 4.每个空间单频信号可看作原函数 g(x ,y) 的傅里叶分量,其振幅是该频率的函数 G(μ,ν)。 5.原函数 g(x ,y) 可看作是所有傅里叶分量的加权的迭加, G(μ,ν) 是其权重 。 2.频谱, 空间频率; 空间频率:沿某一特定方向传播的平面波具有单一的空间频率 。 定义为: 其中:cos α 、cos β为平面波的方向余弦。 空间频谱 :一般情况下可视为各平面波分量的振幅分布函数, 高频分量的振幅较小,低频分量的振幅较大。 3.脉冲响应,传递函数 传递函数 :平面波的角谱:]cos cos 1exp[)0,,(),,(2 20βα--?=jkz v u A z v u A z 改写为:()()()νμνμνμ,,,,,0H z A z A z ?= 其中()]cos cos 1exp[,2 2βανμ--=jkz H 表征光的传播在频域中的特性。 脉冲响应:惠更斯—菲涅尔原理:普通光源可看作若干个单个球面波照明的集合。 )r ,n (cos r )jkr (exp j 1)Q ,P (h d )P (U )Q ,P (h )Q (U λ= ∑?=??∑ 其中: h 称为脉冲响应函数它表示当P 处有一点源时,在观察点Q 处接收到的复振幅分布。 表示孔径中一点在观察平面上的响应,因而 h (x ,y ) 也称为 点扩展函数。 4. 空间滤波, 高通滤波, 低通滤波, 带通滤波,振幅滤波, 位相滤波; 空间滤波:利用透镜的傅里叶变换特性,把透镜作为频谱分析仪,改变物体的频谱结构从而改变像的结构。 高通滤波: 通高频信号阻低频信号,滤除频谱中的低频部分,增强模糊图像的边缘,提高对图像的识别能力, 实现衬度反转;能量损失较大,输出结果一般较暗。 低通滤波:通低频信号阻高频信号,用于消除图像中的高频噪声和周期性网格。 带通滤波:利用信号能量集中的频带不同,选择某些频谱分量通过,阻挡另一些分量。 振幅滤波:仅改变各频率成分的相对振幅分布,不改变其位相分布。 位相滤波:仅改变各频率成分的相对位相分布,不改变其相对振幅分布。 5. 光波的复振幅,平面波的空间频率,平面波的角谱; 一般描述: ()()()]ex p[0P j P U P U ?= 单色平面波光场 : 单色球面波光场: λ αcos =u λ βcos =v ?? ? ???+= )(exp )exp(),(22y x z 2k j jkz z j 1 y x h λ]ex p[)(0 jkr r U P U ±= ? ?2 20 k U )] (2ex p[),(vy ux j A y x U +=π二维]2ex p[)(ux j A x U π= 一维

傅里叶级数

§20-1 傅里叶级数 一、三角函数系的正交性 三角级数: )sin cos (21 0nwx b nwx a a n n ++∑∞=∧ w T π2= 三角函数系: ,sin ,cos ,,2sin ,2cos ,sin ,cos ,1nwx nwx wx wx wx wx (线性组合) 正交性: (1) ?-=22 0cos T T nwxdx (2) ?-=220sin T T nwxdx (3) ?-=220sin cos T T mwxdx nwx (4) ?-=?220cos cos T T mwxdx nwx n m ≠ (5) ?-=?220sin sin T T mwxdx nwx n m ≠ 验证 另易验证,三角函数亦中两相同函数的乘积在??????-2,2T T 上的积分不等于零. ① T dx T T =?-2221 ②2sin 2 22T nwxdx T T =?- ③?-=2222cos T T T nwxdx )2(w T π= 二、(函数展开成)傅里叶级数 条件: 已知)(x f 周期T,在?? ????-2,2T T 上可积,且可展开成逐项可积的三角级数. 即 ∑∞ =++=1 0)sin cos (2)(n n n nwx b nwx a a x f 结论??--==22220cos )(22T T n T T nwxdx x f T a fxdx T a ),2,1( =n ? ???-==22),1,0(cos )(2T T n n nwxdx x f T a

过程:①T a nwxdx b nwxdx a dx a dx x f n T T T T n n T T T T 2sin cos 2)(01222222022正交性∑????∞=----??????++= ② ?-22cos )(T T nwxdx x f ?∑??-∞=--????????++=22122220 sin cos cos cos cos 2T T K T T T T K K kwxdx nwx b kwxdx nwx f a nwxdx a 2 cos 222T a nwxdx a T T n n ?=?-正交性 ③同② 傅里叶级数: )(x f ~)sin cos (21 0nwx b nwx a a n n n ++∑∞ = 其中 =0a =n a =n b 提问: 给一函数)(x f =)(x f 傅里叶级数. 问题解决了? 傅里叶级数收敛性? 收敛的话,其和函数)(?)(x f x S 定理(狭里克雷(Dirichlet)收敛定理) 设)(x f 在?? ????-2,2T T 上满足 (1)连续,或还多有有限个第一类间断点 (2)分段单调,且单调区间的个数还多只有有限个 则)(x f 的傅里叶级数∑∞ =++1 0)sin cos (2n n n nwx b nwx a a 收敛,且其和函数 []?????????????? ?-++-++-=)02()02(21)0()0(21)()(T f T f x f x f x f x S 2,2)2,2()2,2(T T x T T x T T x -=-∈-∈ )(第一类间断点连续点 推论: 1.,2π=T 12==T w π 取[]ππ,-

相关主题
文本预览
相关文档 最新文档