第一章傅里叶光学基础解析
- 格式:ppt
- 大小:1.21 MB
- 文档页数:50
第一章 傅里叶分析部份习题解答及参考答案[1-1] 试分别写出图X1-1中所示图形的函数表达式。
图X1-1 习题[1-1]各函数图形解:(a)−∧L x x a 0 (b) () ∧−−L x b a L x a 2rect(c) ()x L x a sgn 2rect (d) x L x cos 2rect[1-2] 试证明下列各式。
(1) += 21comb 21comb x x- (2) ()()x i e x x x πcomb comb 2comb +=(3)()()()x x N x N ππsin sin lim comb ∞→= (4) ()()xx x πωδωsin lim ∞→=(5)()()∫∞∞−=ωωπδd cos 21x x (6)()ωπδωd 21∫∞∞−±=x i e x解:(1)原式左端∑∑∞−∞=∞−∞=+−−=−−=m n m x n x 12121δδ 令()1−=m n=−+=∑∞−∞=m m x 21δ右端 (2)()∑∑∞−∞=∞−∞=−=−= n n n x n x x 2222comb δδ n 2只取偶数()()∑∞−∞=−=m m x x δcomb()()πδδππm m x e m x e x m im m x i cos 2comb ∑∑∞−∞=∞−∞=−=−=当=m 奇数时,()()0comb comb =+xi ex x π;当=m 偶数时,令n m 2=,则12 cos =x π,并且有: ()()()∑∞−∞=−=+n n x x x 22e comb comb xi δπ 得证。
(3)由公式(1-8-7)知:()∑∞−∞=−=n nxex π2i comb上式可视为等比级数求和,其前N 项之和为:()()()()()x Nx e e e e e e e e q q a S x i x i x i Nx i Nx i Nx i x i Nx i N N ππππππππππsin sin 1111221=−−=−−=−−=−−−−−− 所以 ()()()x Nx S x N N N ππsin sin limlim comb ∞→∞→==得证。
专题:傅里叶光学基础Fundamentals of Fourier Optics§1.1 数学基础知识和傅里叶变换的基本概念§1.2 光波的傅里叶分析§1.3 平面波角谱理论§1.4 透镜的傅里叶变换§1.5 光阿贝成像原理§1.6 光全息术傅里叶光学:研究以光作为载波,实现信息传递、变换、记录和再现的问题。
§1.1 数学基础知识和傅里叶变换的基本概念一、一些常用函数在现代光学中,常用各种非初等函数和特殊函数来描述光场的分布。
常用函数定义图形表示应用阶跃函数1 x0step(x )1step( ) 2 0x x1x0 x 0直边(或刀口)的透过率符号函数1 0xsgn(x) 0 x 01 x 0孔径的一半嵌有相位板的复振幅透过率矩形函数xrect( )ax1 1/ 2a0 else狭缝或矩孔的透过率常用函数定义图形表示应用三角形函数| x|x1 x 1( ) aa0 else光瞳为矩形的非相干成像系统的光学传递函数狭缝或矩孔的sinc函数x sin( x/ a )sinc( )a x/ a 夫琅禾费衍射图样高斯函数2x xGaus( ) expa a 激光器发出的高斯光束x y2 2circ( )r圆域函数圆孔的透过率2 21 x y r0 else二、傅里叶级数的定义一个周期性函数g(x) ,周期为T(频率f = 1/T ),在满足狄里赫利条件(函数在一个周期内只有有限个极值点和第一类不连续点),可以展开为三傅里叶系数角傅里叶级数:ag x a nfx b nfx()cos(2)sin(2)n n2n1在[-T/2, T/2]区间逐项积分:a aT2T2T2T2g x dx dx a nfx dx b nfx dx T()cos(2)sin(2)00(1) nn2 2T2T2T2T2n1因此有:2T2a g(x)dx 02TT将公式(1)两端同乘以cos(2πmfx),并利用三角函数的正交性:0,for m n0, sin(mx)sin(nx)dx cos(mx)cos(nx)dx,for m n ,sin(mx)cos(nx)dx0,for any m and n for m n for m n逐项积分:aT2T2g(x)cos(2mfx)dx cos(2mfx)dxT2T2= 02= 0T2T2a cos(2nfx)cos(2mfx)dxb sin(2nfx)cos(2mfx)dxn T n T22 n1(m n)T2aa nfx dx Tcos(2)n2n T222T2a g(x)cos(2nfx)dxn TT2系数:2T/2直流分量a g(x)dx0/2TT2T/2余弦分量的幅度a g(x)cos2nfx dxn TT/22T/2正弦分量的幅度b g(x)s in2nfx dxn TT/2用傅里叶级数展开表示矩形周期函数ag x a nfx b nfx ()cos2sin2n n2n1f 周期信号可分解为直流,基波( )和f nf各次谐波( )的线性组合。