傅里叶光学简介
- 格式:ppt
- 大小:2.40 MB
- 文档页数:23
傅⾥叶光学讲义傅⾥叶光学实验傅⾥叶光学原理的发明最早可以追溯到1893年阿贝(Abbe )为了提⾼显微镜的分辨本领所做的努⼒。
他提出⼀种新的相⼲成象的原理,以波动光学衍射和⼲涉的原理来解释显微镜的成像的过程,解决了提⾼成像质量的理论问题。
1906年波特(Porter )⽤实验验证了阿贝的理论。
1948年全息术提出,1955年光学传递函数作为像质评价兴起,1960年由于激光器的出现使相⼲光学的实验得到重新装备,因此从上世纪四⼗年代起古⽼的光学进⼊了“现代光学”的阶段,⽽现代光学的蓬勃发展阶段是从上世纪六⼗年代起开始。
由于阿贝理论的启发,⼈们开始考虑到光学成像系统与电⼦通讯系统都是⽤来收集、传递或者处理信息的,因此上世纪三⼗年代后期起电⼦信息论的结果被⼤量应⽤于光学系统分析中。
两者⼀个为时间信号,⼀个是空间信号,但都具有线性性和不变性,所以数学上都可以⽤傅⽴叶变换的⽅法。
将光学衍射现象和傅⽴叶变换频谱分析对应起来,进⽽应⽤于光学成像系统的分析中,不仅是以新的概念来理解熟知的物理光学现象,⽽且使近代光学技术得到了许多重⼤的发展,例如泽尼克相衬显微镜,光学匹配滤波器等等,因此形成了现代光学中⼀门技术性很强的分⽀学科—傅⾥叶光学。
实验原理:我们知道⼀个复变函数f(x,y)的傅⽴叶变换为:+-=?=dxdy vy ux 2i y x f y x f v u F )](exp[),()},({),(π ( 1 )F (u,v)叫作f(x,y)的傅⽴叶变换函数或频谱函数。
它⼀般也为复变函数,f(x,y)叫做原函数,也可以通过求 F(u,v)逆傅⽴叶变换得到原函数f(x,y):+=?=-dudv vy ux 2i v u F v u F y x f 1)](exp[),()},({),(π(2)在光学系统中处理的是平⾯图形,当光波照明图形时从图形反射或透射出来的光波可⽤空间两维复变函数(简称空间函数)来表⽰。
在这些情况下⼀般都可以进⾏傅⾥叶变换或⼴义的傅⾥叶变换。
matlab 傅里叶光学全文共四篇示例,供读者参考第一篇示例:傅里叶光学是一种利用傅里叶变换理论研究光传播和光信息处理的方法。
它将光学现象和傅里叶分析有机地结合在一起,通过对光学系统中光场随时间和空间的变化进行频域分析,揭示了光学系统的特性和行为。
傅里叶光学在光学设计、成像系统、数字图像处理等领域具有重要的应用价值,对于提升光学系统的性能和实现更复杂的光学功能具有重要意义。
傅里叶光学的基本原理是将光场视为波动,利用傅里叶变换将光场表示为频谱分解的形式。
在傅里叶光学中,光场的传播和变换可以用傅里叶变换公式描述,通过傅里叶变换可以将一个任意时间或空间变化的光场分解成一系列频率不同的平面波,这些平面波之间的相位和幅度关系代表了原始光场的性质。
通过傅里叶变换,可以实现光场的频域分析,理解光场的传播规律和特性。
在数字图像处理中,傅里叶变换被广泛应用于图像的频域分析和滤波处理。
通过对图像进行傅里叶变换,可以将图像表示为频域上的频谱分布,通过分析频谱特性可以实现图像的去噪、增强、压缩等处理,提高图像质量和清晰度。
傅里叶变换还可以应用于图像配准、图像拼接、图像分割等图像处理任务,为数字图像处理提供了一种有效的工具和方法。
在实际应用中,matlab是一种常用的工具软件,可以实现傅里叶光学的理论研究和数值计算。
matlab软件提供了丰富的函数库和工具箱,可以用于对光场进行傅里叶变换、光学系统的仿真模拟、图像处理和分析等任务。
通过matlab软件,研究者可以方便地进行傅里叶光学的数值计算和模拟,探索光学系统的特性和行为,实现光学功能的设计和优化。
第二篇示例:傅里叶光学是光学领域中一个重要的分支,它利用傅里叶变换的原理来研究光的传播、衍射、干涉等现象。
在傅里叶光学中,光被视为一种波动现象,能够通过数学方法描述和分析光的传播和相互作用。
让我们来了解一下傅里叶光学的基本概念。
在光学中,光波可以被表示为一个复数函数,具有振幅和相位两个要素。