物理光学A傅里叶光学
- 格式:pptx
- 大小:533.16 KB
- 文档页数:25
实验题目:傅里叶光学实验目的:傅里叶光学原理的发明最早可以追溯到1893年阿贝(Abbe )为了提高显微镜的分辨本领所做的努力。
他提出一种新的相干成象的原理,以波动光学衍射和干涉的原理来解释显微镜的成像的过程,解决了提高成像质量的理论问题。
1906年波特(Porter )用实验验证了阿贝的理论。
1948年全息术提出,1955年光学传递函数作为像质评价兴起,1960年由于激光器的出现使相干光学的实验得到重新装备,因此从上世纪四十年代起古老的光学进入了“现代光学”的阶段,而现代光学的蓬勃发展阶段是从上世纪六十年代起开始。
由于阿贝理论的启发,人们开始考虑到光学成像系统与电子通讯系统都是用来收集、传递或者处理信息的,因此上世纪三十年代后期起电子信息理论的结果被大量应用于光学系统分析中。
两者一个为时间信号,一个是空间信号,但都具有线性性和不变性,所以数学上都可以用傅立叶变换的方法。
将光学衍射现象和傅立叶变换频谱分析对应起来,进而应用于光学成像系统的分析中,不仅是以新的概念来理解熟知的物理光学现象,而且使近代光学技术得到了许多重大的发展,例如泽尼克相衬显微镜,光学匹配滤波器等等,因此形成了现代光学中一门技术性很强的分支学科—傅里叶光学。
实验原理:我们知道一个复变函数f(x,y)的傅立叶变换为⎰⎰+-=ℑ=dxdy vy ux i y x f v u F )](2exp[),()}y ,x (f {),(π ( 1 )F (u,v)叫作f(x,y)的变换函数或频谱函数。
它一般也为复变函数,f(x,y)叫做原函数,也可以通过求 F(u,v)逆傅立叶变换得到原函数f(x,y),⎰⎰+=ℑ=-dudv vy ux 2i v u F v u F y x f 1)](exp[),()},({),(π (2)在光学系统中处理的是平面图形,当光波照明图形时从图形反射或透射出来的光波可用空间两维复变函数(简称空间函数)来表示。
⼤学物理仿真实验傅⾥叶光学⼤学物理仿真实验——傅⾥叶光学实验实验报告姓名:班级:学号:实验名称傅⾥叶光学实验⼀、实验⽬的1.学会利⽤光学元件观察傅⽴叶光学现象。
2.掌握傅⽴叶光学变换的原理,加深对傅⽴叶光学中的⼀些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。
⼆、实验所⽤仪器及使⽤⽅法防震实验台,He-Ne激光器,扩束系统(包括显微物镜,针孔(30µm),⽔平移动调整器),全反射镜,透镜及架(f=+150mm,f=+100mm),50线/mm光栅滤波器,⽩屏三、实验原理平⾯波Ee(x,y)⼊射到p平⾯(透过率为)在p平⾯后Z=0处的光场分布为:E(x,y)= Ee(x,y)图根据惠更斯原理(Huygens’ Principle),在p平⾯后任意⼀个平⾯p’处光场的分布可看成p平⾯上每⼀个点发出的球⾯波的组合,也就是基尔霍夫衍射积分(Kirchhoff’s diffraction integral)。
(1)这⾥:=球⾯波波长;n=p平⾯(x,y)的法线⽮量;K=(波数)是位相和振幅因⼦;cos(n,r)是倾斜因⼦;在⼀般的观察成像系统中,cos(n,r)1。
r=Z+,分母项中r z;(1)式可⽤菲涅尔衍射积分表⽰:(菲涅尔近似 Fresnel approximation)(2)当z更⼤时,即z>>时,公式(2)进⼀步简化为夫琅和费衍射积分:(Fraunhofer Approximation)这⾥:位相弯曲因⼦。
如果⽤空间频率做为新的坐标有:,若傅⽴叶变换为(4)(3)式的傅⽴叶变换表⽰如下:E(x’,y’,z)=F[E(x,y)]=c图2 空间频率和光线衍射⾓的关系tg==,tg===,=可见空间频率越⾼对应的衍射⾓也越⼤,当z越⼤时,衍射频谱也展的越宽;由于感光⽚和⼈眼等都只能记录光的强度(也叫做功率谱),所以位相弯曲因⼦(5)理论上可以证明,如果在焦距为f的汇聚透镜的前焦⾯上放⼀振幅透过率为g(x,y)的图象作为物,并⽤波长为的单⾊平⾯波垂直照明图象,则在透镜后焦⾯上的复振幅分布就是g(x,y)的傅⽴叶变换,其中空间频率,与坐标,的关系为:,。
实验报告陈杨 PB05210097 物理二班实验题目: 傅里叶光学实验实验目的:加深对傅里叶光学中的一些基本概念和理论的理解,验证阿贝成像理论,理解透镜成像过程,掌握光学信息处理的实质,进一步了解透镜孔径对分辨率的影响。
实验原理:1.傅里叶光学变换二维傅里叶变换为:⎰⎰+-=ℑ=dxdyvy ux i y x f v u F )](2exp[),()}y ,x (f {),(π ( 1 ) 1()[(,)]x y g x F a f f -=, ''x y x f f y f f λλ⎧⎫=⎪⎪⎪⎪⎨⎬⎪⎪=⎪⎪⎩⎭复杂的二维傅里叶变换可以用透镜来实现,叫光学傅里叶变换。
2.阿贝成像原理由于物面与透镜的前焦平面不重合,根据傅立叶光学的理论可以知换(频谱),不过只有一个位相因子的差别,对于一般情况的滤波处理可以不考虑。
这个光路的优道在透镜的后焦平面上得到的不是物函数的严格的傅立叶变点是光路简单,是显微镜物镜成像的情况—可以得到很大的象以便于观察,这正是阿贝当时要改进显微镜的分辨本领时所用的光路。
3.空间滤波根据以上讨论:透镜的成像过程可看作是两次傅里叶变换,即从空间函数(,)g x y 变为频谱函数(,)x y a f f ,再变回到空间函数(,)g x y ,如果在频谱面上放一不同结构的光阑,以提取某些频段的信息,则必然使像上发生相应的变化,这样的图像处理称空间滤波。
实验内容:1.测小透镜的焦距f1 (付里叶透镜f2=45.0CM ).光路:直角三棱镜→望远镜(倒置)(出射应是平行光)→小透镜→屏。
(思考:如何测焦距?)夫琅和费衍射:光路:直角三棱镜→光栅→墙上布屏(此光路满足远场近似)(1)利用夫琅和费衍射测一维光栅常数;光栅方程:dsin θ=k λ 其中,k=0,±1, ±2, ±3,…请自己选择待测量的量和求光栅常数的方法。
(卷尺可向老师索要) 记录一维光栅的衍射图样、可看到哪些级?记录 0级、±1级、±2级光斑的位置;(2)记录二维光栅的衍射图样.3.观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征; 光路:直角三棱镜→光栅→小透镜→滤波模板(位于空间频谱面上)→墙上屏思考:空间频谱面在距小透镜多远处?图样应是何样?(1)一维光栅:(滤波模板自制,一定要注意戴眼镜保护;可用一张纸,一根针扎空来制作,也可用其他方法).a.滤波模板只让 0级通过;b.滤波模板只让0、±1级通过;c.滤波模板只让0、±2级通过;(2)二维光栅:a.滤波模板只让含0级的水平方向一排点阵通过;b.滤波模板只让含0级的竖直方向一排点阵通过;c.滤波模板只让含0级的与水平方向成45O一排点阵通过;d.滤波模板只让含0级的与水平方向成135O一排点阵通过.4.“光”字屏滤波物面上是规则的光栅和一个汉字“光”叠加而成,在实验中要求得到如下结果:a.如何操作在像面上仅能看到像面上是横条纹或竖条纹,写出操作过程;b. 如何操作在像面上仅能看到像面上是空心“光”,写出操作过程.实验数据处理:(详细见原始数据)1.小透镜的焦距按照实验内容中的光路图排好光路,在透镜后调节屏的位置。
光学经典理论|傅里叶光学基础2018-02-24 17:00今天的光学经典理论为大家带来的是傅里叶光学基础,傅里叶光学是现代光学的一个分支,将电信理论中使用的傅里叶分析方法移植到光学领域而形成的新学科。
光学人们可以看看!在电信理论中,要研究线性网络怎样收集和传输电信号,一般采用线性理论和傅里叶频谱分析方法。
在光学领域里,光学系统是一个线性系统,也可采用线性理论和傅里叶变换理论,研究光怎样在光学系统中的传播。
两者的区别在于,电信理论处理的是电信号,是时间的一维函数,频率是时间频率,只涉及时间的一维函数的傅里叶变换;在光学领域,处理的是光信号,它是空间的三维函数,不同方向传播的光用空间频率来表征,需用空间的三维函数的傅里叶变换。
包含内容60年代发明了激光器,使人们获得了新的相干光源后,傅里叶光学无论在理论和应用领域均得到了迅速发展。
傅里叶光学运用傅里叶频谱分析方法和线性系统理论对广泛的光学现象作了新的诠释。
其主要内容包括标量衍射理论、透镜成像规律以及用频谱分析方法分析光学系统性质等。
推导演示一个光学信息系统和一个电学信息系统有许多相同之处,它们都是收集信息和传递信息,它们都有共同的数学工具──线性系统理论和傅里叶分析。
从信息论角度,关心的是信息在系统中传递过程;同样,对一个光学系统来讲,物和像的关系,也可以根据标量衍射理论由系统中光场的传播来确定,因此光学系统可以看成一个通信信道。
这样,通信理论中已经成熟的线性系统理论可以用来描述大部分光学系统。
当物体用非相干光照射时,在系统像平面上强度分布与物体上强度分布成线性(正比)关系。
而用来描述电学系统的脉冲响应h(t,τ)概念,即系统对一窄脉冲δ(t)(狄喇克δ函数)的响应,也可以用来描述光学系统,即用光学系统对点光源δ(x,y)的响应(点光源的像)h(x,y;ξ,η)来描述系统的性质,两者的区别仅仅在于电学系统的脉冲响应是时间一维函数,光学系统的脉冲函数是空间二维函数,另外两者都具有位移不变性,前者分布不随时间位移而变,后者分布不随空间位移而变(即等晕条件)。
第一章光场的表示和Fourier分析1.1 Maxwell方程与标量波1.2 平面波和球面波1.3 二维Fourier变换的定义和物理意义1.4 卷积和相关1.5 Fourier变换的基本性质1.6 可分离变量的Fourier变换1.7 一些常用函数和它们的Fourier变换17空间频率概念的引入f (2j eU )y ,x (U π=/1/1==f f y x λcos =X9112. ( f x , f y )的物理意义方向余弦为(cos α, cos β) 的单色平面波在xoy平面上的复振幅分布是以2π为周期的分布,该复振幅分布可用沿x,y 方向的空间频率( f x , f y ) 来描述3.根据波叠加原理,任何复杂的光场分布可以分解为许多不同方向传播的平面波的叠加,或分解为许多不同空间频率的波的叠加.此式表示一个在xy 平面上沿x方向的空间频率为f x ,沿y方向的空间频率为f y 作周期的复振幅函数,它代表一个传播方向为( cos α=λf x ,cos β=λf y )的平面波.)(20),(y f x f j y x eU y x U +=π)cos cos (0),(βαy x jk e U y x U +=四、球面波的复振幅1、定义:点光源发出的单色光波等相位面是球面波1215近轴条件:只考虑xoy 平面上与S 点张角不大的范围.3、近轴条件下球面波的复振幅(1)171.3 Fourier变换的定义和物理意义一、广义变换∫∞∞−=dxx k x f I f ),()()(αα把函数f (x)在x 空间变换成α空间的I f (α)的函数,I f (α) 叫函数f (x) 的以k (α,x) 为核的积分变换.变换Fourier e x k x j −−=−παα2),(拉普拉斯变换−−−x e α梅林变换−−−1αx 阶汉克尔变换n xJ n −−)(α18二、一维Fourier变换1、定义t j eπν2基元函数代表频率为ν的简谐振荡.F (ν)= F {f ( t )}=∫∞∞−−dte tf t j πν2)({}dve v F v F tf vt j π21)()()(∫∞∞−−==F 2、物理意义:1) f (t)可分解为许多基元函数的线性组合;2) F (ν)权重因子.1921四、存在条件(函数g(x,y)存在FT的条件)1、g(x,y)在整个xy平面绝对可积∫∫∞<dxdy y x g |),(|五、广义Fourier变换g (x ,y)=),(lim y x g n n ∞→G (f x ,f y )=),(lim y x n n f f G ∞→2、在任一有限区域里,g(x,y) 必须只有有限个间断点和有限个极大和(或)极小点;3、g(x,y)必须没有无限大间断点.23若g(x,y) 为实函数,G( f x , f y ) 是厄米函数,则G (-f x ,-f y ) = ( f x , f y )即振幅|G (-f x ,-f y ) | = |G( f x , f y )|幅角φ(-f x ,-f y ) = -φ( f x , f y )其中( f x , f y )是G( f x , f y )的共轭复数,G ( f x , f y )是中心对称的函数.傅立叶变换并不改变函数的奇偶性,通常该性质称为傅立叶变换的对称性.∗G ∗G24一、卷积(Convolution)1. 定义:αααd x h f x h x f x g )()()()()(−∫=∗=∞∞−展宽:卷积运算的宽度是原来两个函数宽度之和.设f (x) 宽度为b 1, h (x) 的宽度为b 2,则g (x) 的宽度是:b = b 1+b 2 .1.4 卷积和相关卷积运算的几何解释:先反转h (α),每平移一个距离x,计算f (α)h (x -α)相乘,∫∞∞−−da a x h a f )()(求面积;再绘成g(x) 随x 变化的图形;积分252627)}()({)}()({)()}()({x h x v b x h x u a x h x bv x au ∗+∗=∗+4)结合性:)()()()()()()()}()({x v x h x u x h x v x u x h x v x u ∗∗=∗∗=∗∗)()()(x u x v x h ∗∗=卷积的次序是无关紧要的.2. 性质:1)平滑性:g (x)的变化率<< f (x)、h (x)的最大变化率;2)对易性:f (x) * h (x)= h (x) * f(x);3)线性性质:30二、相关(correlation)1. 定义:αααd x h f x h x f x g )()()()()(*−∫==∞∞−★令:x −=αβ得:βββd h x f )()(*∫∞∞−+ηξηξηξd d y x h f y x h y x f y x g ),(),(),(),(),(*−−∫∫=∞∞−=★ηξηξηξ′′′′∫∫+′+′∞∞−d d h y x f ),(),(*=与卷积运算的区别:没有反转,只有平移.)(αh )(α−h31相关运算示意图322.性质:1)尖峰化:相关运算是两个信号之间存在相似性的量度.34若f (x) = h (x),则:αααd x f f x f x f x g )()()()()(*−∫==∞∞−★ηξηξηξ∫∫−−=∞∞−d d y x f f y x f y x f ),(),(),(),(*★ηξηξηξ′∫∫′′′+′+′=∞∞−d d f y x f ),(),(*3. 自相关函数:1)定义:3538六、自相关定理七、Fourier积分定理对函数相继进行正FT变换和逆FT,得到原函数.八、FT的FT对函数相继进行FT,所得的函数形式不变,仅将坐标反向.F {g (x,y )☆g (x,y )}=|G (f x , f y )|2F {|G (f x , f y )|2}= g (x,y )☆g (x,y )F –1{F {g (x,y )}}= F {F –1{g (x,y )}}=g (x,y )F {F {g (x,y )}}=g (-x,-y )自相关函数的FT是原函数的功率谱,信号的自相关和功率谱之间存在FT关系.F {g (x,y )☆h (x,y )}= (f x , f y )·H (f x , f y )——互相关定理∗G 两函数的互相关与其互谱密度之间存在FT关系.41结论:在极坐标中可分离变量函数g (r ,θ)=g r (r )g θ(θ)它的频谱在极坐标中也是可分离变量函数,关于φ的函数是exp(j k φ),关于ρ的函数是G k (ρ) 它为g r (r ) 的k 阶汉克尔变换.=ρ45464748491.7、一些常用函数和它们的FT50。
实验题目:傅里叶光学实验目的:加深对傅里叶光学中的一些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。
通过实验验证阿贝成像理论,理解透镜成像的物理过程,进而掌握光学信息处理的实质,通过阿贝成像原理,也可进一步了解透镜孔径对分辨率的影响。
实验原理:见预实验报告。
实验步骤:1、调节仪器打开激光器,取一张白纸挡在光路上,观察光圈中红光集中在那个位置,调节全反射镜,使红光集中在光圈中心。
然后将一维光栅、透镜放在光具座上,调节仪器竖直位置与水平位置,使得激光正好经过仪器正中央。
2、测透镜焦距取一张白纸家在遮光屏上,移动遮光屏,观察其上的激光,待到出现一排清晰的衍射光点时,该位置到透镜的距离即为透镜的焦距。
3、观察光分别经过一维、二维光栅后在屏上所成像,并计算一维光栅参数。
取下白纸,观察墙上光幕中有何现象。
取下一维光栅,安上二维光栅,观察墙上光幕有何现象。
4、观察一维光栅条纹取下二维光栅,换上一维光栅。
把白纸放回焦点上,并在k=0级衍射点处扎一小孔,使得只让0级衍射光通过,观察墙上光幕中有何现象。
在k=0、1、-1级衍射点处扎一小孔,使得只让0、1、-1级衍射光通过,观察墙上光幕有何现象。
在k=0、1、-1、2、-2级衍射点处扎一小孔,使得只让0、1、-1、2、-2级衍射光通过,观察墙上光幕有何现象。
5、观察二维光栅条纹取下一维光栅,换上二维光栅,将白纸放到焦平面上。
扎透含零级衍射的一列水平方向的衍射点,观察现象。
扎透含零级衍射的一列竖直方向的衍射点,观察现象。
扎透含零级衍射的一列与水平方向成45°角(逆时针方向旋转)的衍射点,观察现象。
扎透含零级衍射的一列与水平方向成135°角的衍射点,观察现象。
6、观察光通过光字板后的成像将小透镜与二维光栅取下,换上光字板与大透镜。
观察墙上光幕中光字中的条纹。
设法将光字中的横条纹去掉。
设法将光字中的纵条纹去掉。
设法将光字中的条纹都去掉。
傅里叶光学的空间频谱与空间滤波实验11系09级X世杰日期2021年3月30日学号PB09210044实验目的:1.了解傅里叶光学中根本概念,如空间频率,空间频谱,空间滤波和卷积2.理解透镜成像的物理过程3.通过阿贝尔成像原理,了解透镜孔径对分辨率的影响实验原理:一、根本概念频谱面:透镜的后焦面空间函数:实质即光波照明图形时从图形反射或透射出来的光波可用空间两维复变函数空间频谱:一个复变函数f(x,y)的傅立叶变换为⎰⎰+)exp[,(F)]((π,u){,()}f=dxdyvyℑv-ux=yx2ifxyF(u,v)叫作f(x,y)的变换函数或频谱函数空间滤波:在频谱面上放一些光栅以提取某些频段的物信息的过程滤波器:频谱面上的光阑二、阿贝尔成像原理本质就是经过两次傅里叶变换,先是使单色平行光照在光栅上,经衍射分解成不同方向的很多束平行光,经过透镜分别在后焦面上形成点阵,然后代表不同空间频率的光束又在向面上复合而成像。
需要提及的是,由于透镜的大小有限,总有一局部衍射角度大的高频成分不能进入到透镜而被丢弃了,因此像平面上总是可能会丧失一些高频的信息,即在透镜的后焦平面上得到的不是物函数的严格的傅立叶变换〔频谱〕,不过只有一个位相因子的差异,对于一般情况的滤波处理可以不考虑。
这个光路的优点是光路简单,而且可以得到很大的像以便于观察。
物面透镜频谱面像面三、空间滤波器在频谱面上放置特殊的光阑,以滤去特定的光信号(1)单透镜系统(2)双透镜系统(3)三透镜系统四、空间滤波器的种类a.低通滤波:在频谱面上放如图2.4-3(1〕所示的光阑,只允许位于频谱面中心及附近的低频分量通过,可以滤掉高频噪音。
b.高通滤波:在频谱面上放如图2.4-3(2)所示的光阑,它阻挡低频分量而让高频分量通过,可以实现图像的衬度反转或边缘增强。
c.带通滤波:在频谱面上放如图2.4-3(3)所示的光阑,它只允许特定区域的频谱通过,可以去除随机噪音。
傅里叶光学
傅里叶光学的原理是根据傅里叶分析的原理,利用光的波动特性,将一个复杂的光波分解成多个简单的光波,然后利用这些简单的光波来描述复杂的光波的特性。
这种分析方法可以用来研究光的传播,衍射,折射,反射和其他光学相关的现象,可以研究光的空间分布,特性,调制,幅度,相位等特性。
傅里叶光学是一种基于傅里叶变换的光学理论,它用来描述光线的行为,其中光线的行为可以用傅里叶变换的形式表示。
它是由法国物理学家和数学家约瑟夫·傅里叶发现的,他在1822年发表了一篇论文,提出了“傅里叶光学”的概念,并且将其用于描述光线的行为。
傅里叶光学的基本原理是,光线可以用一系列的正弦函数来表示,这些正弦函数的频率和振幅可以用傅里叶变换来表示。
换句话说,傅里叶光学可以用来描述光线如何传播,如何反射,如何折射,以及如何在介质中传播,等等。
傅里叶光学的原理被广泛应用于光学,以及其他科学和工程领域。
它可以用来解释和模拟光线在不同环境中的传播特性,以及光线在介质中的反射、衍射和折射等现象。