两类曲线积分与格林公式-习题课
- 格式:ppt
- 大小:712.00 KB
- 文档页数:33
第二十一章 重积分3格林公式、曲线积分与路线的无关性一、格林公式概念:当区域D 的边界L 由一条或几条光滑曲线所组成时,规定边界曲线的正方向为:当人沿边界行走时,区域D 总在他的左边. 与正方向相反的方向称为负方向,记为-L.定理21.11:若函数P(x,y), Q(x,y)在闭区域D 上连续,且有连续的一阶偏导数,则有格林公式:⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D d y P x Q σ=⎰+L Qdy Pdx . L 为区域D 的边界曲线,并取正方向.证:根据区域D 的不同形状,可分三种情形来证明: (1)若区域D 既是x 型区域,又是y 型区域(如图1),即 平行于坐标轴的直线和L 至多交于两点,该区域D 可表示为: φ1(x)≤y ≤φ2(x), a ≤x ≤b 或ψ1(x)≤x ≤ψ2(x), c ≤y ≤d.这里y=φ1(x)和y=φ2(x)分别为曲线⌒ACB 和⌒AEB 的方程, x=ψ1(x)和x=ψ2(x) 分别为曲线⌒CAE 和⌒CBE的方程, ∴⎰⎰∂∂Dd x Qσ=⎰⎰∂∂)()(21y y d c dx x Q dy ψψ=⎰d c dy y y Q )),((2ψ-⎰d c dyy y Q )),((1ψ=⎰⋂CBE dy y x Q ),(-⎰⋂CAE dy y x Q ),(=⎰⋂CBE dy y x Q ),(+⎰⋂EAC dy y x Q ),(=⎰L dy y x Q ),(.同理可证:-⎰⎰∂∂Dd y Pσ=⎰L dx y x P ),(. 即有⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D d y P x Q σ=⎰+L Qdy Pdx . (2)若区域D 是一条按段光滑的闭曲线围成(如图2),则先用几段光滑曲线将D 分成有限个既是x 型又是y 型的子区域,然后逐块按(1)得到它们的格林公式,相加即可.图2中区域D 可分成三个既是x 型又是y 型的区域D 1,D 2,D 3,则有⎰⎰⎪⎪⎭⎫⎝⎛∂∂-∂∂D d y P x Q σ=⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂1D d y P x Q σ+⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂2D d y P x Q σ+⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂3D d y P x Q σ =⎰+1L Qdy Pdx +⎰+2L Qdy Pdx +⎰+3L Qdy Pdx =⎰+L Qdy Pdx.(3)若区域D 由几条闭曲线所围成(如图3), 可适当添加直线AB, CE,把区域转化为(2)的情况处理.图D 的边界线由AB,L 2,BA,⌒AFC ,CE,L 3,EC 及⌒CGA构成. 由(2)知 ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D d y P x Q σ=⎪⎭⎫ ⎝⎛+++++++⎰⎰⎰⎰⎰⎰⎰⎰⋂⋂CGA EC l CE AFCBA l AB32(Pdx+Qdy)=()⎰⎰⎰++132L L L (Pdx+Qdy)=⎰+L Qdy Pdx .注:格林公式可写为:⎰⎰∂∂∂∂Dd QP y x σ=⎰+L Qdy Pdx .例1:计算⎰AB xdy ,其中曲线AB 为半径为r 的圆在第一象限部分. 解:如图,对半径为r 的四分之一圆域D 应用格林公式有⎰⎰-D d σ=⎰-L xdy =⎰OA xdy +⎰AB xdy +⎰BO xdy =⎰AB xdy . ∴⎰AB xdy =⎰⎰-Dd σ=-41πr 2.例2:计算I=⎰+-Ly x ydxxdy 22, 其中L 为任一不包含原点的闭区域的边界线.解:⎪⎪⎭⎫ ⎝⎛+∂∂22y x x x =22222)(y x x y +-, ⎪⎪⎭⎫ ⎝⎛+-∂∂22y x y y =22222)(y x x y +- 在上述区域D 上连续且有界,∴⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-∂∂-⎪⎪⎭⎫ ⎝⎛+∂∂Dd yx yx y x x x σ2222=0. 由格林公式可得I=0.注:在格林公式中,令P=-y, Q=x ,则得到一个计算平面区域D 的面积S D 的公式:S D =⎰⎰Dd σ=⎰-L ydx xdy 21.例3:如图,计算抛物线(x+y)2=ax (a>0)与x 轴所围的面积.解:曲线⌒AMO由函数y=x ax -, x ∈[0,a], 直线OA 为直线y=0, ∴S D =⎰-ydx xdy 21=⎰-OA ydx xdy 21+⎰⋂-AMO ydx xdy 21=⎰⋂-AMO ydx xdy 21=dx x ax ax ax a ⎰⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-0)(1221=dx ax a ⎰-02121=dx x a a⎰4=62a .二、曲线积分与路线的无关性概念:若对于平面区域D 上任一封闭曲线,皆可不经过D 以外的点而连续收缩于属于D 的某一点,则称此平面区域为单连通区域,否则称为复连通区域。
23.计算曲线积分2222ln()ln()L I x x y dx y x y dy =+++⎰,其中L 为椭圆22221x y a b+=,沿顺时针方向. 解 222,(,)(0,0)P xy Qx y y x y x∂∂==≠∂+∂.作222:,0C x y εε+=>充分小,沿顺时针方向.于是2222ln()ln()LI x x y dx y x y dy =+++⎰2222ln()ln()Cx x y dx y x y dy =+++⎰222cos ln (sin )sin ln cos 0t t t t dt πεεεεεε⎡⎤=⋅-+=⎣⎦⎰24.计算曲线积分[]22(cos sin )(sin cos )x L e I x y y y dy x y y y dx x y =++-+⎰,其中L 是将原点包含在内部的光滑简单正向闭曲线. 解 容易验证,除原点以外恒有P Qy x∂∂=∂∂.作无穷小圆222:K x y ε+=,取正向.由格林公式 []220lim (cos sin )(sin cos )xKe I x y y y dy x y y y dx x y ε→=++-+⎰2cos 00lim cos(sin )2t e t dt πεεεπ→==⎰25. 设L 是由点(1,0)A 经21y x =-以点(1,0)B -,计算22()()Lx y dx x y dyI x y-++=+⎰。
解:222222()P y x xy Q y x y x∂--∂==∂+∂,故积分在不包含原点的单连通区域内与路径无关,取22:1C x y +=上半圆周,从A 到B ,对应的参数方程为cos ,sin ,:0x y θθθπ==→,则220()()()()L C x y dx x y dyI x y dx x y dy d x yπθπ-++==-++==+⎰⎰⎰ 26.设有曲线积分 ,4L22⎰++-=yx xdy ydx I 其中L 为椭圆,1422=+y x 并取正向, 则I 的值为_____________ . 答案:π解 可取椭圆的参数方程计算222 LL 011[sin (sin )cos cos ]422ydx xdy ydx xdy d x y πθθθθθπ-+=-+=-⋅-+⋅=+⎰⎰⎰ 27.设L 是圆周229x y +=的正向,则22(4)()4Lx y dy x y dxx y ++-+⎰ = 答案:π 解 计算可知Q Px y∂∂=∂∂,但内部含有无定义点,不能直接用格林公式,在内部添一辅助曲线1L 2241x y +=,取其顺时针方向,这两条曲线围城区域内积分值为0,只需算被积函数在1L 反方向的积分值即得结果。
2014考研数学备考重点解析一一第二类曲线积分的计算1•计算方法1)直接法;fc Q 田)2)格林公式疔dx+Qdy=JJ ——-—^».D i法€y丿3)补线用格林公式4)利用线积分与路径无关:Q.x(2)计算:a)改换路径;b)利用原函数f Pdx+Qdy = F(x2,y2)-卩(为,%),其中(x1 y)Pdx Qd^dF(x, y),求原函数方法:①偏海文钻石卡视频积分:②凑微分.2•两类线积分的联系::Pdx • Qdy 二「(Pcos= " Qcos :)ds.C Cf—2 2 2 2【例1】计算I =[ ye y dx (xe y2xy e y )dy.其中C为y=3_x从0(0,0)到A(1,1)的曲线段.Cde 2 2 22 2【解析】由于一(ye y) =—(xe y- 2xy2e y) = e y2y2e y,则本题中的线积分与路径无关.d ye x解法1改换路径,B点为(1,0)点。
2 2 2 2 2 2原式= OB ye y dx (xe y2xy2e y)dy .臥ye y dx (xe y2xy2e y)dy1 2 2=0 0(e y2y2e y )dy= 0 - ;2y2e y2dy 012y2e『dy =3.也可将路径改换为另一折线0C、CA,其中C点为(0,1)点,则原式22 222 2I= 0Cye y dx (xe y2xy 2e y)dyCAye y dx (xe y2xy 2e y)dy = 0°edx=e .解法2利用原函数,由于y 2y 22 y 2y 2y 2y 2ye dx (xe 2xy e )dy 二(ye )dx xd(ye ) = d(xye )2则 F(x,y) =xye •2,则-(e y )dx - (x y 2)dy =C【解析】由格林公式得2 2 2%e ydx +(x + y 2)dy = "(1 -2ye y )d<rD=d ; - SD则其面积S =2二.y 22故 ■- L e y dx (x y )dy 二 2 . 【例3】计算I(e x siny 「b(x y))dx • (e x cosy -ax)dy ,其中a,b 为正常数,C 为从点A(2a,0)沿曲线Cy = ■. 2ax - x 2 到点 O(0,0)的弧.【解析】补线段OA ,则I(e x sin y _b(x y))dx (e x cosy _ax)dyC OA-OA(e x sin y _b(x y))dx (e x cosy _ ax)dy2a= (e x cosy _a -e x cosy b)d ;「_ o (_bx)dx ,D2故 L ye y dx (xe2 2 2 2xy e y )dy 二 xye y(1,1)e .(0,0)2 2【例2】设C 为椭圆4x y -8x 沿逆时针方向其中D 是由4x 2 • y 2 =8x 围成的椭圆域,S 为其面积,海文钻石卡视频该椭圆方程可改写为2(X -1)2」1,4也可将路径改换为另一折线 0C 、CA ,其中C 点为(0,1)点,则2 21【解析】(1)C:x (y -1N ,由格林公式得1ydx -xdyir .(—i —i)d 二(这里用了格林公式)D i-2-:;2=_2二.注:由本题可看出,对线积分ydx-xdy y Q,P ~ 2 2 ,Qx y x 2 y 2—x— 2,除原点(0,0)夕卜,P,Q 有连续一阶偏导数, x y且― ■-Q,(x, (0,0).此时有以下结论: -X 2aI = (b -a)d 匚 b xdx =D(b - a) 2a 2b【例4】计算I”中2 21(DC 为x y -2八二的正向;⑵C 为4x 2 • y 2「8x 二4的正向.ag-x ■(其中D 为曲线C 所围圆域)2 2x -y x 22-y\((x 2y 2)^(x 2y 2)2 )d ;「-0.(2)C :42yi ,此时不能直接用格林公式,因为在 (0,0)点条件不满足.因此,作以(0,0)为中心的圆8L: x 2y 2;2 ( ;0)且取顺时针方向,在 L 和C 大学考研围成的环形域上用格林公式得2 2x -y ydx - xdy _(_ 訂(/ 2 2、2D(x y )2 2x -y (x 2 y 2)2)d一0,xdx —xdy ■L x 2 y 2 :^^=0. x 2 y 2 [“ ydx-xdyydx -xdy C x 2y 2x 2 y 2其中D 为y =-』2ax -x 2与0A 围成的半圆域,则D1)沿任何一条不包含原点在内的分段光滑闭曲线的积分为零 2 )沿任何一条包含原点在内的分段光滑闭曲线的积分均相等 事实上,线积分这个类型.c【例 5 】计算 I = [「(y )cosx -二y ]dx [「(y )si nx -二]dy ,其中 AMB 弧为连结 A (二,2)与点 B (3二,4)的线段AMB【解析】= 2-(1 3二)2=2專 _2二(1 3二)=「6二AMB 『血3 3一飯『血dy兀x1一dxdy—3二(二1)dx二dx"二(x - y)dx+(x+y)dy (x + y)dx _(x _ y)dy xdy_ydxL x^ ,L ,_ I 2 2x_ y4x y x y AB 的下方的任意分段光滑简单曲线,且该曲线与大学考研线段 AB 所围图形面积为2,解法1补线段BA ,则AMB AMB'BA - BAAMBA-BA'AMBA Pdx Qdy「(3)d —ex cy!!^ - 2■:x直线BA 的方程为:y1,则 JIBAFCOSX -二 xx1(1)]dx [ (1) si nx-二]dxJIJI解法其中L 申(y)co xdx + 申(y)si nxdy =®(y)si nxAM B(3 二4)(二,2) =°顺时针方向。
第十章曲线积分与曲面积分【教学目标与要求】1.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。
2.掌握计算两类曲线积分的方法.3.熟练掌握格林公式并会运用平面曲线积分与路径无关的条件,会求全微分的原函数.4.了解第一类曲面积分的概念、性质,掌握计算第一类曲面积分的方法。
【教学重点】1。
两类曲线积分的计算方法;2。
格林公式及其应用;3。
第一类曲面积分的计算方法;【教学难点】1。
两类曲线积分的关系及第一类曲面积分的关系;2.对坐标的曲线积分与对坐标的曲面积分的计算;3。
应用格林公式计算对坐标的曲线积分;6.两类曲线积分的计算方法;7.格林公式及其应用格林公式计算对坐标的曲线积分;【参考书】[1]同济大学数学系.《高等数学(下)》,第五版.高等教育出版社。
[2]同济大学数学系.《高等数学学习辅导与习题选解》,第六版.高等教育出版社.[3]同济大学数学系。
《高等数学习题全解指南(下)》,第六版.高等教育出版社§11.1 对弧长的曲线积分一、对弧长的曲线积分的概念与性质曲线形构件的质量:设一曲线形构件所占的位置在xOy面内的一段曲线弧L上,已知曲线形构件在点(x,y)处的线密度为μ(x,y)。
求曲线形构件的质量.把曲线分成n小段,∆s1,∆s2,⋅⋅⋅,∆s n(∆s i也表示弧长);任取(ξi,ηi)∈∆s i,得第i小段质量的近似值μ(ξi,ηi)∆s i;整个物质曲线的质量近似为;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n}→0,则整个物质曲线的质量为.这种和的极限在研究其它问题时也会遇到。
定义设函数f(x,y)定义在可求长度的曲线L上,并且有界。
,将L任意分成n个弧段:∆s1,∆s2,⋅⋅⋅,∆s n,并用∆s i表示第i段的弧长;在每一弧段∆s i上任取一点(ξi,ηi),作和;令λ=max{∆s1,∆s2,⋅⋅⋅,∆s n},如果当λ→0时,这和的极限总存在,则称此极限为函数f(x,y)在曲线弧L上对弧长的曲线积分或第一类曲线积分,记作,即.其中f(x,y)叫做被积函数,L叫做积分弧段。