第二型曲线积分格林公式精品PPT课件
- 格式:pptx
- 大小:1.83 MB
- 文档页数:43
第二型曲面积分的高斯公式和格林公式
第二型曲面积分的高斯公式和格林公式是向量分析中的两个重要公式,它们分别用于计算三维空间中曲面上的积分和二维平面上曲线上的积分。
高斯公式(Gauss's Theorem):
高斯公式用于计算三维空间中一个封闭曲面S所包围的体积V上的向量场F的通量。
公式如下:
∮_S F·dS = ∫∫∫_V (∇·F) dV
其中,F是一个向量场,S是封闭曲面,V是S所包围的体积,∇·F是F的散度,∮_S F·dS表示F在S上的通量。
这个公式表明,一个向量场在一个封闭曲面上的通量等于该向量场在曲面所包围的体积内的散度的体积分。
格林公式(Green's Theorem):
格林公式用于计算二维平面上一个简单闭曲线C所包围的区域D上的向量场F的通量。
公式如下:
∮_C F·dr = ∫∫_D (∂Q/∂x -∂P/∂y) dA
其中,F是一个二维向量场,可以表示为(P, Q),C是简单闭曲线,D是C所包围的区域,∂Q/∂x和∂P/∂y分别是Q关于x的偏导数和P关于y的偏导数,∮_C F·dr表示F在C上的通量,∫∫_D (∂Q/∂x -∂P/∂y) dA表示(∂Q/∂x -∂P/∂y)在D上的面积分。
这个公式表明,一个二维向量场在一个简单闭曲线上的通量
等于该向量场在曲线所包围的区域内的一个特定函数的面积分。
这个特定函数就是向量场的旋度的负值。
以上两个公式都是向量分析中的基本定理,它们在物理学、工程学和其他领域中有广泛的应用。
【最新整理,下载后即可编辑】§2 第二型曲线积分 教学目的与要求:掌握第二型曲线积分的定义和计算公式,了解第一、二型曲线积分的差别.教学重点,难点:重点:第二型曲线积分的定义和计算公式 难点:第二型曲线积分的计算公式 教学内容:第二型曲线积分一 第二型曲线积分的意义在物理学中还碰到另一种类型的曲线积分问题。
例如一质点受力),(y x F 的作用沿平面曲线L 从点A 移动到点B ,求力),(y x F 所作的功(图220-)。
为此在曲线B A内插入1-n 个分点121,,,-n M M M ,与n M B M A ==,0一起把有向曲线B A分成n 个有向小曲线段),,2,1(1n i M M i i =-,若记小曲线段i i M M 1-的弧长为i s ∆,则分割T 的细度为i ni s T ∆=≤≤1max 。
设力),(y x F 在x 轴和y 轴方向的投影分别为),(y x P 与),(y x Q ,那么)),(),,((),(y x Q y x P y x F =。
又设小曲线段i i M M 1-在x 轴与y 轴上的投影分别为1--=∆i i i x x x 与1--=∆i i i y y y ,其中),(i i y x 与),(11--i i y x 分别为分点i M 与1-i M 的坐标,记),(1i i M M y x L i i∆∆=-,于是力),(y x F 在小曲线段i i M M 1-上所作的功 i i i i i i M M i i i y Q x p L F W ii ∆+∆=⋅≈-),(),(),(1ηξηξηξ,其中),(i i ηξ为小曲线段i i M M 1-上任一点。
因而力),(y x F 沿曲线B A所作的功近似的等于∑∑∑===∆+∆≈=ni i i i ni i i i ni i y Q x p W W 111),(),(ηξηξ当细度0→T 时,上式右边和式的极限就应该是所求的功。